Proceedings Frontiers in Education 1997 27th Annual Conference. Teaching and Learning in an Era of Change
Manufacturing computer modules which instruct students on efficient procedures for designing part... more Manufacturing computer modules which instruct students on efficient procedures for designing parts for manufacture across the curriculum. The goal is to assist engineering students to gain a deeper understanding of the interaction between features of a part being designed and the corresponding manufacturing requirements of the part in injection molding, sheet metal stamping, and finite element analysis. Animated sequences of the processes are either generated dynamnically or indexed according to the possible designs. Students create designs, and the tooling complexity is demonstrated through both 2D and 3D animations. An underlying internal representation of the part being designed provides a non-intrusive critique mechanism to provide feedback to the student.
Journal of Computing and Information Science in Engineering, 2018
Additive manufacturing (AM) offers significant opportunities for product innovation in many field... more Additive manufacturing (AM) offers significant opportunities for product innovation in many fields provided that designers are able to recognize the potential values of AM in a given product development process. However, this may be challenging for design teams without substantial experience with the technology. Design inspiration based on past successful applications of AM may facilitate application of AM even in relatively inexperienced teams. While designs for additive manufacturing (DFAM) methods have experimented with reuse of past knowledge, they may not be sufficient to fully realize AM's innovative potential. In many instances, relevant knowledge may be hard to find, lack context, or simply unavailable. This design information is also typically divorced from the underlying logic of a products' business case. In this paper, we present a knowledge based method for AM design ideation as well as the development of a suite of modular, highly formal ontologies to capture i...
Medical device design is a challenging process, often requiring collaboration between medical and... more Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems.
Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B, 2011
This paper presents an e-Design framework for knowledge management through its application in an ... more This paper presents an e-Design framework for knowledge management through its application in an engineering design case study. The e-Design framework enables the implementation of integrated design information throughout the entire design process. It facilitates the ease of sharing real time information across multiple individual designers, departments, or organizations as would be required in large scale design efforts. Similarly, it allows for the ease of use of technical tools integral to the design process that small design departments depend upon. Thus, regardless of the scale, the efficiency of engineering design can be improved with the use of the e-Design framework. The many features of the e-Design framework are exemplified through its application in a practical industry design problem. The case study in this paper addresses the utility and ease of use of this framework and provides one potential implementation method. This study involves a representative application of an...
Journal of Computing and Information Science in Engineering, 2010
A semantic information model to improve reuse and communication of engineering design knowledge i... more A semantic information model to improve reuse and communication of engineering design knowledge is presented in this paper. We consider design to be a process involving a sequence of decisions informed by the current state of information. As such, the information model developed is structured to reflect the conceptualizations of engineering design decisions with a particular emphasis on semantically capturing design rationale. Through the approach presented, knowledge reuse is achieved by communicating design rationale. A case study is presented to illustrate two key features of the approach: (1) seamless integration of separate modular domain ontologies and instance knowledge related to engineering design that are needed to support decision making and (2) the explicit documentation of design rationale through design decisions.
Volume 2A: 33rd Computers and Information in Engineering Conference, 2013
The design of more sustainable products can be best accomplished in a tradeoff-based design proce... more The design of more sustainable products can be best accomplished in a tradeoff-based design process that methodically handles conflicting objectives. Such conflicts are often seen between, environmental impact, cost, and product performance. To support such a process, we propose the development of an environment where sustainability considerations are explicitly introduced early into the design process. This explicitness is provided by integrating the requirements information of sustainability standards and regulations directly into the design process. The emergence of the semantic web provides an interoperable environment in which the context and meaning of knowledge about the relationships among various domains can be shared. This work presents an ontological framework designed to represent both the objectives that pertain to sustainable design and the applicable sustainability standards and regulations. This integrated approach not only can ease the adoption of the standards and ...
Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B, 2011
Every new design, project, or procedure within a company generates a considerable amount of new i... more Every new design, project, or procedure within a company generates a considerable amount of new information and important knowledge. Furthermore, a tremendous amount of legacy knowledge already exists in companies in electronic and non-electronic formats, and techniques are needed for representing, structuring and reusing this knowledge. Many researchers have spent considerable time and effort developing semantic knowledge management systems, which in theory are presumed to address these problems. Despite significant research investments, little has been done to implement these systems within an industrial setting. In this paper we identify five main requirements to the development of an industry-ready application of semantic knowledge management systems and discuss how each of these can be addressed. These requirements include the ease of new knowledge management software adoption, the incorporation of legacy information, the ease of use of the user interface, the security of the s...
Volume 1: 32nd Design Automation Conference, Parts A and B, 2006
This paper presents an optimization ontology and its implementation into a prototype computationa... more This paper presents an optimization ontology and its implementation into a prototype computational knowledge-based tool dubbed ONTOP (ontology for optimization). Salient feature of ONTOP include a knowledge base that incorporates both standardized optimization terminology, formal method definitions, and often unrecorded optimization details, such as any idealizations and assumptions that may be made when creating an optimization model, as well as the model developer's rationale and justification behind these idealizations and assumptions. ONTOP was developed using Protégé, a Java-based, free open-source ontology development environment created by Stanford University. Two engineering design optimization case studies are presented. The first case study consists of the optimization of a structural beam element and demonstrates ONTOP's ability to address the variations in an optimal solution that may arise when different techniques and approaches are used. A second case study, a more complex design problem that deals with the optimization of an impeller of a pediatric left ventricular heart assist device, demonstrates the wealth of knowledge ONTOP is able to capture. Together, these test beds help illustrate the potential value of an ontology in representing application-specific knowledge while facilitating both the sharing and exchanging of this knowledge in engineering design optimization.
Semantic technologies are playing an increasingly popular role as a means for advancing the capab... more Semantic technologies are playing an increasingly popular role as a means for advancing the capabilities of knowledge management systems. Among these advancements, researchers have successfully leveraged semantic technologies, and their accompanying techniques, to improve the representation and search capabilities of knowledge management systems. This paper introduces a further application of semantic techniques. We explore semantic relatedness as a means of facilitating the development of more ''intelligent'' engineering knowledge management systems. Using semantic relatedness quantifications to analyze and rank concept pairs, this novel approach exploits semantic relationships to help identify key engineering relationships, similar to those leveraged in change management systems, in product development processes. As part of this work, we review several different semantic relatedness techniques, including a meronomic technique recently introduced by the authors. We introduce an aggregate measure, termed ''An Algorithm for Identifying Engineering Relationships in Ontologies,'' or AIERO, as a means to purposely quantify semantic relationships within product development frameworks. To assess its consistency and accuracy, AIERO is tested using three separate, independently developed ontologies. The results indicate AIERO is capable of returning consistent rankings of concept pairs across varying knowledge frameworks. A PCB (printed circuit board) case study then highlights AIERO's unique ability to leverage semantic relationships to systematically narrow where engineering interdependencies are likely to be found between various elements of product development processes.
Abstract–We have built several multimedia tutors for science and engineering education. This pape... more Abstract–We have built several multimedia tutors for science and engineering education. This paper discuses Design for Manufacturing tutors and an electronic homework systems used by over 2000 students daily. The engineering tutors instruct students on efficient procedures for designing parts for manufacture. The goal is to support a deeper understanding of the interaction between features of a part being designed and the corresponding manufacturing requirements of the part in injection molding, sheet metal ...
Reliance on plant exudates is a relatively rare dietary specialization among mammals. One well-st... more Reliance on plant exudates is a relatively rare dietary specialization among mammals. One well-studied example of closely related exudate feeders is the New World marmosets and tamarins. Whereas marmosets actively gouge tree bark with their incisors to stimulate the flow of sap, tamarins are opportunistic exudate feeders that do not gouge bark. Several studies of the dentaries and jaw adductors indicate that marmosets exhibit specializations for increased gape at the expense of bite force. Few studies, however, have looked to the cranium of marmosets for evidence of functional specializations. Using 3D finite element models of the marmoset Callithrix jacchus and the tamarin Saguinus fuscicollis, we investigated the performance of the cranium under loading regimes that mimicked unilateral molar biting and bark-gouging. We investigated three measures of performance: the efficiency with which muscle force is transferred to bite force, the extent to which the models are stressed (a predictor of failure), and the work expended by muscles as they deform the skull (total strain energy). We found that during molar biting the two models exhibited similar levels of performance, though the Saguinus model had slightly higher mechanical efficiency, a slightly lower state of stress, and expended more energy on deformation. In contrast, under the bark-gouging load, Callithrix exhibited much higher mechanical efficiency than Saguinas, but did so at the expense of more work and higher levels of von Mises stress. This analysis illustrates that differences in the shapes of the skulls of Callithrix and Saguinus confer differences in performance. Whether these aspects of performance are targets of selection awaits broader comparative analyses.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2009
This paper presents the use of first-order logic to improve upon currently employed engineering d... more This paper presents the use of first-order logic to improve upon currently employed engineering design knowledge management techniques. Specifically, this work uses description logic in unison with Horn logic, to not only guide the knowledge acquisition process but also to offer much needed support in decision making during the engineering design process in a distributed environment. The knowledge management methods introduced are highlighted by the ability to identify modeling knowledge inconsistencies through the recognition of model characteristic limitations, such as those imposed by model idealizations. The adopted implementation languages include the Semantic Web Rule Language, which enables Horn-like rules to be applied to an ontological knowledge base and the Semantic Web's native Web Ontology Language. As part of this work, an ontological tool, OPTEAM, was developed to capture key aspects of the design process through a set of design-related ontologies and to serve as a...
In this paper we lay the foundations for exchanging, adapting, and interoperating engineering ana... more In this paper we lay the foundations for exchanging, adapting, and interoperating engineering analysis models (EAMs). Our primary foundation is based upon the concept that engineering analysis models are knowledge-based abstractions of physical systems, and therefore knowledge sharing is the key to exchanging, adapting, and interoperating EAMs within or across organizations. To enable robust knowledge sharing, we propose a formal set of ontologies for classifying analysis modeling knowledge. To this end, the fundamental concepts that form the basis of all engineering analysis models are identified, described, and typed for implementation into a computational environment. This generic engineering analysis modeling ontology is extended to include distinct analysis subclasses. We discuss extension of the generic engineering analysis modeling class for two common analysis subclasses: continuum-based finite element models and lumped parameter or discrete analysis models. To illustrate ho...
This article discusses ongoing research investigating the feasibility of supporting an interopera... more This article discusses ongoing research investigating the feasibility of supporting an interoperability and integration framework to enable the digital thread, or an authoritative source of truth with current technology. The question that initiated this exploratory research was, “Is there current technology that can enable cross-domain digital artifact data sharing needed for the digital thread?” A thorough review and investigation of current state-of-the-art model-based systems engineering was performed by reviewing literature and performing multiple site visits and interviews with organizations at the forefront of digital engineering. After this initial investigation and review, a Semantic Web-enabled framework that would allow data in the thread to be captured, stored, transferred, checked for completeness and consistency, and changed under revision change control management began to be formed. This framework has gone through revisions. This paper reflects the most current demons...
Volume 1A: 38th Computers and Information in Engineering Conference, 2018
Statistical metamodels can robustly predict manufacturing process and engineering systems design ... more Statistical metamodels can robustly predict manufacturing process and engineering systems design results. Various techniques, such as Kriging, polynomial regression, artificial neural network and others, are each best suited for different scenarios that can range across a design space. Thus, methods are needed to identify the most appropriate metamodel or model composite for a given problem. To account for pros and cons of different metamodeling techniques for a wide diversity of data sets, in this paper we introduce a super-metamodel optimization framework (SMOF) to improve overall prediction accuracy by integrating different metamodeling techniques without a need for additional data. The SMOF defines an iterative process first to construct multiple metamodels using different methods and then aggregate them into a weighted composite and finally optimize the super-metamodel through advanced sampling. The optimized super-metamodel can reduce an overall prediction error and sustains t...
DETC2009-87624 Semantic Relatedness Measures for Identifying Relationships in Product Development Processes
The Semantic Web, especially in relation to ontologies, provides a structured, formal framework f... more The Semantic Web, especially in relation to ontologies, provides a structured, formal framework for knowledge interoperability. This trait has been exploited by both the biomedical community in development of the Human Gene Ontology [1] and also by geographers in development of geospatial ontologies Using semantic relatedness techniques, researchers from both communities have been able to develop and integrate comprehensive knowledge bases. Beyond knowledge integration, semantic relatedness techniques have also been able to provide each community with a unique insight into relationships between concepts in their respective domains. In the engineering community, semantic relatedness techniques promise to provide similar insight into product development processes. This paper explores the application of semantic relatedness techniques to ontologies as a means towards improved knowledge management in product development processes. Several different semantic relatedness techniques are re...
Volume 4: 4th Design for Manufacturing Conference, 1999
This paper describes multimedia based manufacturing tutors currently under development at the Uni... more This paper describes multimedia based manufacturing tutors currently under development at the University of Massachusetts Amherst. The purpose of these tutors to assist the user in better visualizing and understanding the relationship between part design and the ease or difficulty of creating the tooling needed to produce the part. Evaluation of these tutors by both freshman and junior engineering students is discussed as well. A finite element analysis tutor, also under development, is briefly described.
Uploads
Papers by Ian Grosse