In the context of the renewed interest of peptides as therapeutics, it is important to have an on... more In the context of the renewed interest of peptides as therapeutics, it is important to have an on-line resource for 3D structure prediction of peptides with well-defined structures in aqueous solution. We present an updated version of PEP-FOLD allowing the treatment of both linear and disulphide bonded cyclic peptides with 9-36 amino acids. The server makes possible to define disulphide bonds and any residue-residue proximity under the guidance of the biologists. Using a benchmark of 34 cyclic peptides with one, two and three disulphide bonds, the best PEP-FOLD models deviate by an average RMS of 2.75 Å from the full NMR structures. Using a benchmark of 37 linear peptides, PEP-FOLD locates lowest-energy conformations deviating by 3 Å RMS from the NMR rigid cores. The evolution of PEP-FOLD comes as a new on-line service to supersede the previous server. The server is available at: http://bioserv .rpbs.univ-paris-diderot.fr/PEP-FOLD.
Understanding and predicting protein structures depend on the complexity and the accuracy of the ... more Understanding and predicting protein structures depend on the complexity and the accuracy of the models used to represent them. A Hidden Markov Model has been set up to optimally compress 3D conformation of proteins into a structural alphabet (SA), corresponding to a library of limited and representative SA-letters. Each SA-letter corresponds to a set of short local fragments of four C similar both in terms of geometry and in the way in which these fragments are concatenated in order to make a protein. The discretization of protein backbone local conformation as series of SA-letters results on a simplification of protein 3D coordinates into a unique 1D representation. Some evidence is presented that such approach can constitute a very relevant way to analyze protein architecture in particular for protein structure comparison or prediction.
Motivation:The scientific community urgently needs to standardize the exchange of biological data... more Motivation:The scientific community urgently needs to standardize the exchange of biological data. This is helped by the use of a common protocol and the definition of shared data structures. We have based our standardization work on CORBA, a technology that has become a standard in the past years and allows interoperability between distributed objects. Results: We have defined an IDL specification for genome maps and present it to the scientific community. We have implemented CORBA servers based on this IDL to distribute RHdb and HuGeMap maps. The IDL will co-evolve with the needs of the mapping community. Availability: The standard IDL for genome maps is available at http:// corba.ebi.ac.uk/RHdb/EUCORBA/MapIDL.html. The IORs to browse maps from Infobiogen and EBI are at http://www.infobiogen.fr/services/Hugemap/IOR and http://corba.ebi.ac.uk/RHdb/EUCORBA/IOR. Contact: manu@infobiogen.fr, tome@ebi.ac.uk Vol. 15 no. 2 1999 Pages 157-169 157 E Oxford University Press BIOINFORMATICS E.Barillot et al.
ASSESSING A NEW APPROACH FOR PROTEIN STRUCTURE MODELING COMBINING STRUCTURAL ALPHABET LOCAL CONFORMATION PREDICTION AND GREEDY ALGORITHM FOR RECONSTRUCTION
Uploads
Papers by F. Guyon