Rofik, M Ainur
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network ( CNN ) Radikto, Radikto; Mulyana, Dadang Iskandar; Rofik, M Ainur; Zoharuddin Zakaria, M Ohan
Jurnal Pendidikan Tambusai Vol. 6 No. 1 (2022): April 2022
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai, Riau, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (640.098 KB)

Abstract

Kendaraan adalah alat angkut di jalan, termasuk kendaraan bermotor dan kendaraan tidak bermotor, sebagaimana dimaksud dalam angka 7 Pasal 1 Undang-Undang Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan. Melihat perkembangan kendaraan dimana masyarakat Indonesia mengandalkan kendaraan, tidak menutup kemungkinan jika kendaraan yang ada mulai memenuhi jalan di Indonesia, kebiasaan hidup masyarakat modern yang serba mengandalkan kendaraan untuk aktivitas sehari-hari. Oleh karena itu, peneliti membuat program pengenalan citra kendaraan menggunakan algoritma Convolutional Neural Network, yang merupakan kegiatan konvolusi dengan menggabungkan beberapa lapisan-lapisan persiapan, memanfaatkan beberapa komponen yang bergerak sama dan dimotivasi oleh sistem sensorik biologis. Gambar kendaraan yang digunakan adalah Sepedah, Sepeda Motor, Becak, Bajaj Mobil, Mobil Pikup, Mobil Molen, Bus, dan Truk. Implementasi pengenalan citra kendaraan dilakukan dengan menggunakan 2 model uji, model Sequential dan model VGG16 tingkat atas yang dijalankan dengan aplikasi Google Collaboratory, dan Keras. Data uji dalam penelitian ini adalah 1406 citra data latih dan 274 citra data uji, menghasilkan nilai evaluasi 98,18%, nilai loss 0,103 pada model Sequential, dan tingkat akurasi 99,64%.Implementasi pengenalan citra kendaraan dilakukan dengan menggunakan 2 model uji, model Sequential dan model VGG16 tingkat atas yang dijalankan dengan aplikasi Google Collaboratory, dan Keras. Data uji dalam penelitian ini adalah 1406 citra data latih dan 274 citra data uji, menghasilkan nilai evaluasi akurasi 98,18%, nilai loss 0,103 pada model Sequential, dan tingkat akurasi 99,64%,tingkat loss 0,014 pada model on top VGG16.
Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network ( CNN ) Radikto, Radikto; Mulyana, Dadang Iskandar; Rofik, M Ainur; Zoharuddin Zakaria, M Ohan
Jurnal Pendidikan Tambusai Vol. 6 No. 1 (2022): 2022
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai, Riau, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jptam.v6i1.3179

Abstract

Kendaraan adalah alat angkut di jalan, termasuk kendaraan bermotor dan kendaraan tidak bermotor, sebagaimana dimaksud dalam angka 7 Pasal 1 Undang-Undang Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan. Melihat perkembangan kendaraan dimana masyarakat Indonesia mengandalkan kendaraan, tidak menutup kemungkinan jika kendaraan yang ada mulai memenuhi jalan di Indonesia, kebiasaan hidup masyarakat modern yang serba mengandalkan kendaraan untuk aktivitas sehari-hari. Oleh karena itu, peneliti membuat program pengenalan citra kendaraan menggunakan algoritma Convolutional Neural Network, yang merupakan kegiatan konvolusi dengan menggabungkan beberapa lapisan-lapisan persiapan, memanfaatkan beberapa komponen yang bergerak sama dan dimotivasi oleh sistem sensorik biologis. Gambar kendaraan yang digunakan adalah Sepedah, Sepeda Motor, Becak, Bajaj Mobil, Mobil Pikup, Mobil Molen, Bus, dan Truk. Implementasi pengenalan citra kendaraan dilakukan dengan menggunakan 2 model uji, model Sequential dan model VGG16 tingkat atas yang dijalankan dengan aplikasi Google Collaboratory, dan Keras. Data uji dalam penelitian ini adalah 1406 citra data latih dan 274 citra data uji, menghasilkan nilai evaluasi 98,18%, nilai loss 0,103 pada model Sequential, dan tingkat akurasi 99,64%.Implementasi pengenalan citra kendaraan dilakukan dengan menggunakan 2 model uji, model Sequential dan model VGG16 tingkat atas yang dijalankan dengan aplikasi Google Collaboratory, dan Keras. Data uji dalam penelitian ini adalah 1406 citra data latih dan 274 citra data uji, menghasilkan nilai evaluasi akurasi 98,18%, nilai loss 0,103 pada model Sequential, dan tingkat akurasi 99,64%,tingkat loss 0,014 pada model on top VGG16.
Implementasi Sistem Informasi Pelaporan Jumantik Berbasis Web pada Puskesmas Kelurahan Krukut Jakarta Barat Sugeng, Sugeng; Mulyana, Dadang Iskandar; Lestari, Sri; Rofik, M Ainur; Joharuddin Zakaria, M Ohan; Ependi, Soleh; Maharanisa, Maharanisa
Jurnal Pendidikan Tambusai Vol. 6 No. 1 (2022): 2022
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai, Riau, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jptam.v6i1.3548

Abstract

Juru pemantau jentik (JUMANTIK) adalah Petugas Jumantik yang berasal dari kalangan masyrakat yang melakukan pemantauan jentik nyamuk dirumah warga, perkantoran, tempat umum, dan tempat ibadah guna memberantas penyebaran virus penyebab penyakit DBD. Saat ini anggota Jumantik kelurahan Krukut Jakarta Barat banyak yang berasal dari anggota Pembina Kesejahteraan Keluarga (PKK). Penulisan hasil laporan pengamatan lingkungan yang dilakukan oleh para Petugas Jumantik dan KORWIL Jumantik pun masih dilakukan dengan cara mengisi berkas form hasil pemeriksaan jentik secara manual yang diserahkan kepada T.U Puskesmas. Hasil rekapan pemantauan jentik yang dibuat oleh T.U Puskesmas nantinya diserahkan kepada Kepala Puskesmas. Namun metode ini seringkali menimbulkan masalah, diantaranya kesalahan dalam pengisian dan terlambatnya penyerahan data kepihak Puskesmas. Penelitian ini penulis membangun sistem informasi pelaporan jumantik berbasis web (SIMPATIK) yang diharapkan mampu mengatasi timbulnya permasalahan berhubungan dengan kualitas informasi, berupa : ketersedian informasi dan berkas-berkas dalam bentuk komputerisasi sehingga bisa didapatkan dengan secara cepat, tepat dan akurat.