Description
Additional details
- Published: 1995
- Imprint: Morgan Kaufmann
- Language: English
- ISBN: 978-1-55860-377-6
- DOI: 10.1016/C2009-0-27705-1
Actions for selected chapters
/CONTRIBUTED PAPERS
- Book chapterAbstract onlyOn-line Learning of Binary Lexical Relations Using Two-dimensional Weighted Majority Algorithms
Naoki Abe, Hang Li and Atsuyoshi Nakamura
Pages 3-11
- Book chapterAbstract onlyOn Handling Tree-Structured Attributes in Decision Tree Learning
Hussein Almuallim, Yasuhiro Akiba and Shigeo Kaneda
Pages 12-20
- Book chapterAbstract onlyTheory and Applications of Agnostic PAC-Learning with Small Decision Trees
Peter Auer, Robert C. Holte and Wolfgang Maass
Pages 21-29
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyVisualizing High-Dimensional Structure with the Incremental Grid Growing Neural Network
Justine Blackmore and Risto Miikkulainen
Pages 55-63
- Book chapterAbstract only
- Book chapterAbstract onlyAutomatic Selection of Split Criterion during Tree Growing Based on Node Location
Carla E. Brodley
Pages 73-80
- Book chapterAbstract only
- Book chapterAbstract onlyA Comparative Evaluation of Voting and Meta-learning on Partitioned Data
Philip K. Chan and Salvatore J. Stolfo
Pages 90-98
- Book chapterAbstract onlyFast and Efficient Reinforcement Learning with Truncated Temporal Differences
Pawel Cichosz and Jan J. Mulawka
Pages 99-107
- Book chapterAbstract onlyK*: An Instance-based Learner Using an Entropic Distance Measure
John G. Cleary and Leonard E. Trigg
Pages 108-114
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyProtein Folding: Symbolic Refinement Competes with Neural Networks
Susan Craw and Paul Hutton
Pages 133-141
- Book chapterAbstract only
- Book chapterAbstract onlyCommittee-Based Sampling For Training Probabilistic Classifiers
Ido Dagan and Sean P. Engelson
Pages 150-157
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyExplanation-Based Learning and Reinforcement Learning: A Unified View
Thomas G. Dietterich and Nicholas S. Flann
Pages 176-184
- Book chapterAbstract onlyLessons from Theory Revision Applied to Constructive Induction
Steven K. Donoho and Larry A. Rendell
Pages 185-193
- Book chapterAbstract onlySupervised and Unsupervised Discretization of Continuous Features
James Dougherty, Ron Kohavi and Mehran Sahami
Pages 194-202
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyDistilling Reliable Information From Unreliable Theories
Sean P. Engelson and Moshe Koppel
Pages 218-225
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyEfficient Algorithms for Finding Multi-way Splits for Decision Trees
Truxton Fulton, Simon Kasif and Steven Salzberg
Pages 244-251
- Book chapterAbstract onlyAnt-Q: A Reinforcement Learning approach to the traveling salesman problem
Luca M. Gambardella and Marco Dorigo
Pages 252-260
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyReinforcement Learning by Stochastic Hill Climbing on Discounted Reward
Hajime Kimura, Masayuki Yamamura and Shigenobu Kobayashi
Pages 295-303
- Book chapterAbstract onlyAutomatic Parameter Selection by Minimizing Estimated Error
Ron Kohavi and George H. John
Pages 304-312
- Book chapterAbstract onlyError-Correcting Output Coding Corrects Bias and Variance
Eun Bae Kong and Thomas G. Dietterich
Pages 313-321
- Book chapterAbstract onlyLearning to Make Rent-to-Buy Decisions with Systems Applications
P. Krishnan, Philip M. Long and Jeffrey Scott Vitter
Pages 322-330
- Book chapterAbstract only
- Book chapterAbstract onlyHill Climbing Beats Genetic Search on a Boolean Circuit Synthesis Problem of Koza's
Kevin J. Lang
Pages 340-343
- Book chapterAbstract only
- Book chapterAbstract onlyComparing Several Linear-threshold Learning Algorithms on Tasks Involving Superfluous Attributes
Nick Littlestone
Pages 353-361
- Book chapterAbstract onlyLearning policies for partially observable environments: Scaling up
Michael L. Littman, Anthony R. Cassandra and Leslie Pack Kaelbling
Pages 362-370
- Book chapterAbstract onlyIncreasing the performance and consistency of classification trees by using the accuracy criterion at the leaves
David J. Lubinsky
Pages 371-377
- Book chapterAbstract only
- Book chapterAbstract onlyInstance-Based Utile Distinctions for Reinforcement Learning with Hidden State
R. Andrew McCallum
Pages 387-395
- Book chapterAbstract onlyEfficient Learning from Delayed Rewards through Symbiotic Evolution
David E. Moriarty and Risto Miikkulainen
Pages 396-404
- Book chapterAbstract onlyFree to Choose: Investigating the Sample Complexity of Active Learning of Real Valued Functions
Partha Niyogi
Pages 405-412
- Book chapterAbstract only
- Book chapterAbstract onlyInferring Reduced Ordered Decision Graphs of Minimum Description Length
Arlindo L. Oliveira and Alberto Sangiovanni-Vincentelli
Pages 421-429
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyFor Every Generalization Action, Is There Really an Equal and Opposite Reaction? Analysis of the Conservation Law for Generalization Performance
R. Bharat Rao, Diana Gordon and William Spears
Pages 471-479
- Book chapterAbstract onlyActive Exploration and Learning in Real-Valued Spaces using Multi-Armed Bandit Allocation Indices
Marcos Salganicoff and Lyle H. Ungar
Pages 480-487
- Book chapterAbstract onlyDiscovering Solutions with Low Kolmogorov Complexity and High Generalization Capability
Jürgen Schmidhuber
Pages 488-496
- Book chapterAbstract onlyA Comparison of Induction Algorithms for Selective and non-Selective Bayesian Classifiers
Moninder Singh and Gregory M. Provan
Pages 497-505
- Book chapterAbstract onlyRetrofitting Decision Tree Classifiers Using Kernel Density Estimation
Padhraic Smyth, Alexander Gray and Usama M. Fayyad
Pages 506-514
- Book chapterAbstract onlyAutomatic Speaker Recognition: An Application of Machine Learning
Brett Squires and Claude Sammut
Pages 515-521
- Book chapterAbstract onlyAn Inductive Learning Approach to Prognostic Prediction
W. Nick Street, O.L. Mangasarian and W.H. Wolberg
Pages 522-530
- Book chapterAbstract only
- Book chapterAbstract onlyLearning Collection Fusion Strategies for Information Retrieval
Geoffrey Towell, Ellen M. Voorhees, ... Ben Johnson-Laird
Pages 540-548
- Book chapterAbstract onlyLearning by Observation and Practice: An Incremental Approach for Planning Operator Acquisition
Xuemei Wang
Pages 549-557
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyLearning Hierarchies from Ambiguous Natural Language Data
Takefumi Yamazaki, Michael J. Pazzani and Christopher Merz
Pages 575-583
INVITED TALKS (ABSTRACTS ONLY)
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapter
Page 591
Armand Prieditis
Department of Computer Science, University of California, Davis, CAStuart Russell
Computer Science Division, University of California, Berkeley, CACopyright
Copyright © 1995 Elsevier Inc. All rights reserved.