Description
Additional details
- Published: 1994
- Imprint: Morgan Kaufmann
- Language: English
- ISBN: 978-1-55860-335-6
- DOI: 10.1016/C2009-0-27542-8
Actions for selected chapters
/CONTRIBUTED PAPERS
- Book chapterAbstract onlyA New Method for Predicting Protein Secondary Structures Based on Stochastic Tree Grammars
Naoki Abe and Hiroshi Mamitsuka
Pages 3-11
- Book chapterAbstract onlyLearning Recursive Relations with Randomly Selected Small Training Sets
David W. Aha, Stephane Lapointe, ... Stan Matwin
Pages 12-18
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyUsing Sampling and Queries to Extract Rules from Trained Neural Networks
Mark W. Craven and Jude W. Shavlik
Pages 37-45
- Book chapterAbstract only
- Book chapterAbstract onlyBoosting and Other Machine Learning Algorithms
Harris Drucker, Corinna Cortes, ... Vladimir Vapnik
Pages 53-61
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyAn Incremental Learning Approach for Completable Planning
Melinda T. Gervasio and Gerald F. DeJong
Pages 78-86
- Book chapterAbstract onlyLearning by Experimentation: Incremental Refinement of Incomplete Planning Domains
Yolanda Gil
Pages 87-95
- Book chapterAbstract onlyLearning Disjunctive Concepts by Means of Genetic Algorithms
Attilio Giordana, Lorenza Saitta and Floriano Zini
Pages 96-104
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyIrrelevant Features and the Subset Selection Problem
George H. John, Ron Kohavi and Karl Pfleger
Pages 121-129
- Book chapterAbstract onlyAn Efficient Subsumption Algorithm for Inductive Logic Programming
Jörg-Uwe Kietz and Marcus Lübbe
Pages 130-138
- Book chapterAbstract onlyGetting the Most from Flawed Theories
Moshe Koppel, Alberto Maria Segre and Ronen Feldman
Pages 139-147
- Book chapterAbstract onlyHeterogeneous Uncertainty Sampling for Supervised Learning
David D. Lewis and Jason Catlett
Pages 148-156
- Book chapterAbstract only
- Book chapterAbstract onlyTo Discount or not to Discount in Reinforcement Learning: A Case Study Comparing R Learning and Q Learning
Sridhar Mahadevan
Pages 164-172
- Book chapterAbstract onlyComparing Methods for Refining Certainty-Factor Rule-Bases
J. Jeffrey Mahoney and Raymond J. Mooney
Pages 173-180
- Book chapterAbstract only
- Book chapterAbstract onlyEfficient Algorithms for Minimizing Cross Validation Error
Andrew W. Moore and Mary S. Lee
Pages 190-198
- Book chapterAbstract only
- Book chapterAbstract onlyUsing Genetic Search to Refine Knowledge-Based Neural Networks
David W. Opitz and Jude W. Shavlik
Pages 208-216
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyTowards a Better Understanding of Memory-Based Reasoning Systems
John Rachlin, Simon Kasif, ... David W. Aha
Pages 242-250
- Book chapterAbstract onlyHierarchical Self-Organization in Genetic Programming
Justinian P. Rosca and Dana H. Ballard
Pages 251-258
- Book chapterAbstract only
- Book chapterAbstract onlyOn the Worst-case Analysis of Temporal-difference Learning Algorithms
Robert E. Schapire and Manfred K. Warmuth
Pages 266-274
- Book chapterAbstract only
- Book chapterAbstract onlyLearning Without State-Estimation in Partially Observable Markovian Decision Processes
Satinder P. Singh, Tommi Jaakkola and Michael I. Jordan
Pages 284-292
- Book chapterAbstract onlyPrototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms
David B. Skalak
Pages 293-301
- Book chapterAbstract onlyA Bayesian Framework to Integrate Symbolic and Neural Learning
Irina Tchoumatchenko and Jean-Gabriel Ganascia
Pages 302-308
- Book chapterAbstract onlyA Modular Q-Learning Architecture for Manipulator Task Decomposition
Chen K. Tham and Richard W. Prager
Pages 309-317
- Book chapterAbstract only
- Book chapterAbstract onlyA Powerful Heuristic for the Discovery of Complex Patterned Behavior
Raúl E. Valdés-Pérez and Aurora Pérez
Pages 326-334
- Book chapterAbstract only
- Book chapterAbstract onlyCombining Top-down and Bottom-up Techniques in Inductive Logic Programming
John M. Zelle, Raymond J. Mooney and Joshua B. Konvisser
Pages 343-351
- Book chapterAbstract onlySelective Reformulation of Examples in Concept Learning
Jean-Daniel Zucker and Jean-Gabriel Ganascia
Pages 352-360
INVITED TALKS
- Book chapterAbstract only
- Book chapterAbstract only
- Book chapterAbstract onlyFrequencies vs Biases: Machine Learning Problems in Natural Language Processing — Abstract
Fernando C.N. Pereira
Page 380
Page 381
William W. Cohen
AT&T Bell LaboratoriesHaym Hirsh
Rutgers UniversityCopyright
Copyright © 1994 Elsevier Inc. All rights reserved.