Academia.eduAcademia.edu

Outline

Nature Inspired Computing for Wireless Networks Applications

2019, International Journal of Applied Evolutionary Computation

https://doi.org/10.4018/IJAEC.2019010101

Abstract

Nature inspired computing (NIC) is a computing paradigm inspired by the attractive behavior of nature. NIC has influenced the researchers to perform optimization in many approaches using physics/chemistry-based algorithms and biology-based algorithms. Physics/chemistry-based algorithms include the water cycle, a galaxy base, or gravitational-based algorithms. Biology-based algorithms, namely bio-inspired and swarm intelligence-related algorithms are discussed with their importance in the field of wireless networks. A wireless network such as MANET's, VANET, AdHoc, and IoT are playing a vital role in all sectors. Some of the issues such as finding the optimal path in routing, clustering, dynamic allocation of motes, energy and lifetime of the network pertaining to a wireless network can be solved using an NIC approach. Algorithms derived by the inspiration from nature are discussed briefly in this article.

References (99)

  1. Abbasi,M.,Latiff,B.A.,Shafie,M.,&Chizari,H.(2014).Bioinspiredevolutionary algorithm based for improving network coverage in wireless sensor networks. The Scientific World Journal.
  2. Agarwal,P.,&Mehta,S.(2014).Nature-InspiredAlgorithms:State-of-Art,Problems andProspects.Nature,100(14).
  3. Ahmed, H. & Glasgow, J. (2012). Swarm intelligence: concepts, models and applications.
  4. Akl, S. G. (Ed.). (2007). A Reminiscent Study Of Nature Inspired Computation. In Unconventional computation: 6th international conference, UC 2007, Kingston, Canada, August 13-17, 2007: proceedings.NewYork:Springer.
  5. Al-Azzawi, M. K., Luo, J., & Li, R. (2015, February). Inspired Energy Efficient DataDeliveryBasedonRedundantDataEliminationusingDiscreteCuckooSearch Optimization.Int. J. Control Autom.,8(2),417-428.doi:10.14257/ijca.2015.8.2.39
  6. Allaboutbirds.org.(n.d.).Whydon'tbirdscollidewhentheyareflyingclosetogether intightflocks.Retrievedfromhttps://www.allaboutbirds.org/why-dont-birdscollide- when-they-are-flying-close-together-in-tight-flocks/
  7. Ammu, P. K., Sivakumar, K. C., & Rejimoan, R. (2013). Biogeography-based optimization-asurvey.Int.J.ElectronComput.Sci.Eng.,2(1),154-160.
  8. Antoniou,P.,Pitsillides,A.,Engelbrecht,A.,&Blackwell,T.(2010).Mimickingthe bird flocking behavior for controlling congestion in sensor networks. In 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)(p.17).
  9. Antoniou,P.,Pitsillides,A.,Engelbrecht,A.,Blackwell,T.,&Michael,L.(2011). Applyingswarmintelligencetoanovelcongestioncontrolapproachforwirelesssensor networks.InProceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies(p.78).doi:10.1145/2093698.2093776
  10. Aote,S.S.,Raghuwanshi,M.M.,&Malik,L.(2013).Abriefreviewonparticleswarm optimization limitations and future directions. International Journal of Computer Science Engineering IJCSE,2(5),196-200.
  11. Back, T., Foussette, C., & Krause, P. (2013). Contemporary evolution strategies. Springer.doi:10.1007/978-3-642-40137-4
  12. Bajec, I. L., Zimic, N., & Mraz, M. (2007, August). The computational beauty of flocking: Boids revisited. Mathematical and Computer Modelling of Dynamical Systems,13(4),331-347.doi:10.1080/13873950600883485
  13. Bellaachia,A.,&Bari,A.(2012).Aflockingbaseddataminingalgorithmfordetecting outliersincancergeneexpressionmicroarraydata.In2012 International Conference on Information Retrieval Knowledge Management (CAMP)(pp.305-311).
  14. Binitha,S.,&Sathya,S.S.(2012).Asurveyofbioinspiredoptimizationalgorithms. Int. J. Soft Comput. Eng.,2(2),137-151.
  15. Blas, N. G., de Mingo, L. F., & Penuela, J. C. (2009). Bio-Inspired Optimization Strategies:ASurvey.Retrievedfromhttps://csit.am/2009/proceedings/4AIMSS/2.pdf
  16. Blum, C., & Merkle, D. (Eds.). (2008). Swarm intelligence: introduction and applications.Berlin:Springer.doi:10.1007/978-3-540-74089-6
  17. Chandran, V., Nidhya, R., Kumar, A. D., & Thamaraiselvi, K. (2014, March). Retinal and cancer cell image segmentation for predicting the diseased images. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE)(pp.1-6).IEEE.
  18. Chawla,M.,&Duhan,M.(2015,July).BatAlgorithm:ASurveyoftheState-of-the- Art. Applied Artificial Intelligence, 29(6), 617-634. doi:10.1080/08839514.2015.1
  19. Chazelle,B.(2014,July).TheConvergenceofBirdFlocking.Journal of the Association for Computing Machinery,61(4),1-35.doi:10.1145/2629613
  20. Chen, X., Zhou, Y., & Luo, Q. (2014). A Hybrid Monkey Search Algorithm for ClusteringAnalysis.The Scientific World Journal,2014,1-16.PMID:24772039
  21. Civicioglu,P.,&Besdok,E.(2013,April).AconceptualcomparisonoftheCuckoo- search,particleswarmoptimization,differentialevolutionandartificialbeecolony algorithms.Artificial Intelligence Review,39(4),315-346.doi:10.1007/s10462-011- 9276-0 C l e r c , M . ( 2 0 0 6 ) . Pa r t i c l e s w a r m o p t i m i z a t i o n . L o n d o n , U K : I S T E . doi:10.1002/9780470612163
  22. Cui,Y.,Xu,K.,Xu,M.,&Wu,J.(2003).OptimalQoSroutingbasedonextended simulated annealing. In International Conference on Information Networking (pp. 553-562).doi:10.1007/978-3-540-45235-5_54
  23. Das, S. & Barani, S. (2015). A survey of nature inspired computing for energy optimizationinwirelesssensornetwork.Int. J. Computer Technology and Applications, 6(6),931-942.
  24. Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial foraging optimization algorithm: theoretical foundations, analysis, and application. In Foundations of Computational Intelligence(Vol.3,pp.23-55).Springer. Decastro,L.(2007,March).Fundamentalsofnaturalcomputing:Anoverview.Physics of Life Reviews,4(1),1-36.doi:10.1016/j.plrev.2006.10.002
  25. Dhivya,M.,Sundarambal,M.,&Anand,L.N.(2011).EnergyEfficientComputation ofDataFusioninWirelessSensorNetworksUsingCuckooBasedParticleApproach (CBPA).Int. J. Commun. Netw. Syst. Sci.,4(4),249-255.
  26. DiCaro,G.,Ducatelle,F.,&Gambardella,L.M.(2005,September).AntHocNet:An adaptivenature-inspiredalgorithmforroutinginmobileadhocnetworks.Eur. Trans. Telecommun.,16(5),443-455.doi:10.1002/ett.1062
  27. Dill,L.M.(1983).Adaptiveflexibilityintheforagingbehavioroffishes.Canadian Journal of Fisheries and Aquatic Sciences,40(4),398-408.doi:10.1139/f83-058
  28. Dixit, M., Upadhyay, N., & Silakari, S. (2015). An Exhaustive Survey on Nature Inspired Optimization Algorithms. International Journal of Software Engineering and Its Applications,9(4),91-104.
  29. Eldos,T.,&AlQasim,R.(2013).OntheperformanceoftheGravitationalSearch Algorithm.International Journal of Advanced Computer Science Applications.
  30. Fathian, M., Shiran, G. R., & Jafarian-Moghaddam, A. R. (2016, May). Two New ClusteringAlgorithmsforVehicularAd-HocNetworkBasedonAntColonySystem. Wireless Personal Communications,88(2),413-413.doi:10.1007/s11277-016-3290-0
  31. Fister,I.Jr,Fister,D.,&Fister,I.(2013).Acomprehensivereviewofcuckoosearch: Variantsandhybrids.Int. J. Math. Model. Numer. Optim.,4(4),387-409.
  32. Fister,I.,Yang,X.-S.,&Brest,J.(2013).Acomprehensivereviewoffireflyalgorithms. Swarm and Evolutionary Computation,13,34-46.doi:10.1016/j.swevo.2013.06.001
  33. Fu, W., Johnston, M., & Zhang, M. (2010). Hybrid particle swarm optimisation algorithms based on differential evolution and local search. In Australasian Joint Conference on Artificial Intelligence(pp.313-322).doi:10.1007/978-3-642-17432- 2_32 Goyal,S.,&Patterh,M.S.(2014,November).WirelessSensorNetworkLocalization Based on Cuckoo Search Algorithm. Wireless Personal Communications, 79(1), 223-234.doi:10.1007/s11277-014-1850-8
  34. Guo, W., Chen, M., Wang, L., Mao, Y., & Wu, Q. (2016, January). A survey of biogeography-basedoptimization.Neural Computing & Applications.
  35. Hatamlou,A.(2013,February).Blackhole:Anewheuristicoptimizationapproach fordataclustering.Inf. Sci.,222,175-184.doi:10.1016/j.ins.2012.08.023
  36. Hatti,D.I.,Raju,S.,&Dixit,M.M.(2012).DesignofNeuralNetworkasDataFlow ModelforImageCompression.International Journal of Image Processing and Vision Sciences,1(3),22-26.
  37. Helmy,A.O.,Ahmed,S.,&Hassenian,A.E.(2014).ArtificialFishSwarmAlgorithm forEnergy-EfficientRoutingTechnique.InIntelligentSystems'2014(pp.509-519). Cham:SpringerInternationalPublishing.
  38. Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic algorithm for hierarchical wirelesssensornetworks.J. Netw.,2(5),87-97.
  39. Induja, S., & Eswaramurthy, V. P. (2016). Bat Algorithm: An Overview and its Applications.Int J Adv Res Comput Commun Eng,5(1),448-451.
  40. Ituarte-Villarreal, C. M., Lopez, N., & Espiritu, J. F. (2012). Using the Monkey AlgorithmforHybridPowerSystemsOptimization.Procedia Computer Science,12, 344-349.doi:10.1016/j.procs.2012.09.082
  41. Jacqueline, S. (n.d.). Why Birds Flock. About.com. Retrieved from http://birding. about.com/od/birdbehavior/a/Why-Birds-Flock.htm
  42. Jamali,S.,Valipoor,K.,&Analoui,M.(2009).Nature-InspiredApproachforStable CongestionControlintheInternet.InInternational Conference on Future Computer and Communication ICFCC 2009(pp.131-135).
  43. Johnson,D.M.,Teredesai,A.M.,&Saltarelli,R.T.(2005)."Genetic programming in wireless sensor networks," in Genetic Programming(pp.96-107).Springer.
  44. Kammerdiner,A.R.,Mucherino,A.,&Pardalos,P.M.(2009).Application of monkey search metaheuristic to solving instances of the multidimensional assignment problem. In Optimization and Cooperative Control Strategies(pp.385-397).Springer.
  45. Kapur,R.(2015).Reviewofnatureinspiredalgorithmsincloudcomputing.In2015 International Conference on Computing, Communication Automation (ICCCA)(pp. 589-594).
  46. Karaboga,D.,&Akay,B.(2009,August).AcomparativestudyofArtificialBeeColony algorithm.Applied Mathematics and Computation,214(1),108-132.doi:10.1016/j. amc.2009.03.090
  47. Kaur,S.P.,&Sharma,M.(2015,March).RadiallyOptimizedZone-DividedEnergy- AwareWirelessSensorNetworks(WSN)ProtocolUsingBA(BatAlgorithm).Journal of the Institution of Electronics and Telecommunication Engineers,61(2),170-179. doi:10.1080/03772063.2014.999833
  48. Kocer,H.E.,&Akca,M.R.(2014,November).AnImprovedArtificialBeeColony Algorithm with Local Search for Traveling Salesman Problem. Cybernetics and Systems,45(8),635-649.doi:10.1080/01969722.2014.970396
  49. Kotteeswaran, C., & Rajesh, A. (2014). A survey of diverse nature bio-inspired computing models. in 2014 2nd International Conference on Current Trends in Engineering and Technology (ICCTET)(pp.120-124).
  50. Kumar, S., Sharma, V. K., & Kumari, R. (2014). Improved onlooker bee phase in artificialbeecolonyalgorithm.arXiv:1407.5753
  51. Kumar,Y.,&Sahoo,G.(2014).Areviewongravitationalsearchalgorithmandits applicationsto data clustering&classification. International Journal of Intelligent SystemsandApplications,6(6),79.
  52. Li,J.,Dang,J.,Bu,F.,&Wang,J.(2014).AnalysisandImprovementoftheBacterial ForagingOptimizationAlgorithm.Journal of Computing Science and Engineering, 8(1),1-10.doi:10.5626/JCSE.2014.8.1.1
  53. Li,X.,Xu,L.,Wang,H.,Song,J.,&Yang,S.X.(2010,June).Adifferentialevolution- based routing algorithm for environmental monitoring wireless sensor networks. Sensors (Basel),10(6),5425-5442.doi:10.3390/s100605425PMID:22219670
  54. Mane,S.U.,&Gaikwad,P.G.(2014).Natureinspiredtechniquesfordataclustering.In 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA)(pp.419-424).doi:10.1109/CSCITA.2014.6839297
  55. Meng,J.,Guo,X.Y.,Lu,S.L.,Xiao,B.X.,&Wen,W.L.(2011).ModelingRooting inWheatUsingLindenmayerSystem.In2011 International Conference on Intelligent Computation Technology and Automation (ICICTA)(Vol.2,pp.121-124).
  56. Meng,X.-B.,Gao,X.Z.,Lu,L.,Liu,Y.,&Zhang,H.(2016,July).Anewbio-inspired optimisationalgorithm:BirdSwarmAlgorithm.Journal of Experimental & Theoretical Artificial Intelligence,28(4),673-687.doi:10.1080/0952813X.2015.1042530
  57. Merkel, S., Becker, C. W., & Schmeck, H. (2012, December). Firefly-inspired synchronizationforenergy-efficientdistanceestimationinmobilead-hocnetworks. In 2012 IEEE 31st International Performance Computing and Communications Conference (IPCCC)(pp.205-214).IEEE.
  58. Miettinen, K. (Ed.). (1999). Evolutionary algorithms in engineering and computer science: recent advances in genetic algorithms, evolution strategies, evolutionary programming, genetic programming, and industrial applications. NewYork:Wiley.
  59. Misra,S.,&Agarwal,P.(2012,March).Bio-inspiredgroupmobilitymodelformobile adhocnetworksbasedonbird-flockingbehavior.Soft Computing,16(3),437-450. doi:10.1007/s00500-011-0728-x Mukhopadhyay,M.(2014).ABriefSurveyonBioInspiredOptimizationAlgorithms forMolecularDocking.
  60. Nemati, M., Momeni, H., & Bazrkar, N. (2013). Binary Black Holes Algorithm. International Journal of Computers and Applications,79(6).
  61. Nemati, M., Salimi, R., & Bazrkar, N. (2003). Black Holes Algorithm: A Swarm Algorithm inspired of Black Holes for Optimization Problems.NewYork:Cambridge UniversityPress.
  62. Neshat,M.,Sepidnam,G.,Sargolzaei,M.,&Toosi,A.N.(2014,December).Artificial fishswarmalgorithm:Asurveyofthestate-of-the-art,hybridization,combinatorialand indicativeapplications.Artificial Intelligence Review,42(4),965-997.doi:10.1007/ s10462-012-9342-2
  63. Norouzi, A., Zaim, A. H., Norouzi, A., & Zaim, A. H. (2014, February). Genetic Algorithm Application in Optimization of Wireless Sensor Networks, Genetic AlgorithmApplicationinOptimizationofWirelessSensorNetworks.TheScientific WorldJournal.PMID:24693235
  64. Ochoa,A.,Garcia,Y.,&Yanez,J.(2010).Logistics Optimization Service Improved with Artificial Intelligence. In Soft Computing for Intelligent Control and Mobile Robotics(pp.57-65).Springer.
  65. Prusinkiewicz,P.,Hammel,M.,Hanan,J.,&Mech,R.(1996).L-systems:fromthe theorytovisualmodelsofplants.InProceedings of the 2nd CSIRO Symposium on Computational Challenges in Life Sciences.CollingwoodAustralia:Citeseer(pp.1-32).
  66. Pythaloka, D., Wibowo, A. T., & Sulistiyo, M. D. (2015). Artificial fish swarm algorithmforjobshopschedulingproblem.In2015 3rd International Conference on Information and Communication Technology (ICoICT)(pp.437-443).
  67. Quintao,F.P.,Nakamura,F.G.,&Mateus,G.R.(2007).Evolutionary algorithms for combinatorial problems in the uncertain environment of the wireless sensor networks. In Evolutionary Computation in Dynamic and Uncertain Environments(pp.197-222). Springer.doi:10.1007/978-3-540-49774-5_9
  68. Rafsanjani,M.K.,&Dowlatshahi,M.B.(2012).Usinggravitationalsearchalgorithm forfindingnearoptimalbasestationlocationintwo-tieredWSNs.Int. J. Mach. Learn. Comput.,2(4),377-380.doi:10.7763/IJMLC.2012.V2.148
  69. Recioui,A.(2016,September).ApplicationofaGalaxy-BasedSearchAlgorithmto MIMOSystemCapacityOptimization.Arabian Journal for Science and Engineering, 41(9),3407-3414.doi:10.1007/s13369-015-1934-0
  70. Reynolds,C.W.(1987,August).Flocks,herdsandschools:Adistributedbehavioral model. ACM SIGGRAPH computer graphics, 21(4), 25-34. Retrieved from http:// www.cs.toronto.edu/dt/siggraph97-course/cwr87/
  71. Sabri,N.M.,Puteh,M.,&Mahmood,M.R.(2013)."Areviewofgravitationalsearch algorithm,"Int J Adv.Soft Comput Appl,5(3),1-39.
  72. Sadollah,A.,Eskandar,H.,Bahreininejad,A.,&Kim,J.H.(2015,September).Water cyclealgorithmforsolvingmulti-objectiveoptimizationproblems.Soft Computing, 19(9),2587-2603.doi:10.1007/s00500-014-1424-4
  73. Saleem,M.,&Farooq,M.(2007).Beesensor: a bee-inspired power aware routing protocol for wireless sensor networks. In Applications of Evolutionary Computing (pp.81-90).Springer.
  74. Sarbazi-Azad,H.,&Zomaya,A.Y.(2014).Nature-Inspired Computing for Autonomic Wireless Sensor Networks. In Large Scale Network-Centric Distributed Systems(p. 760).Wiley-IEEEPress.
  75. Satapathy,S.C.,&Naik,A.(2013).ModifiedHarmonySearchforGlobalOptimization. InProceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) (pp. 293-301). Springer Berlin Heidelberg. doi:10.1007/978-3-642-35314-7_34
  76. Scheidler, A., Brutschy, A., Diwold, K., Merkle, D., & Middendorf, M. (2011). Ant Inspired Methods for Organic Computing. InH.Schmeck&T.Ungerer(Eds.), Organic Computing -A Paradigm Shift for Complex Systems (pp. 95-109). Basel: SpringerBasel.
  77. Shah-Hosseini,H.(2013,October).MultilevelThresholdingforImageSegmentation usingtheGalaxy-basedSearchAlgorithm.Int. J. Intell. Syst.Appl.,5(11),19-33.
  78. Sharma, R., & Sharma, R. (2015). Improved General Self Cuckoo Search based RoutingProtocolforWirelessSensorNetworks.International Journal of Computers and Applications,122(4).
  79. Sharma, V., Pattnaik, S. S., & Garg, T. (2012). A review of bacterial foraging optimizationanditsapplications.International Journal of Computers and Applications.
  80. Shih, F. Y., & Edupuganti, V. G. (2009, February). A differential evolution based algorithmforbreakingthevisualsteganalyticsystem.Soft Computing,13(4),345-353. doi:10.1007/s00500-008-0330-z Siddique,N.,&Adeli,H.(2015,December).NatureInspiredComputing:AnOverview and Some Future Directions. Cognitive Computation, 7(6), 706-714. doi:10.1007/ s12559-015-9370-8PMID:26693257
  81. Song,G.,Yu,H.,Niu,B.,&Li,L.(2013).Animprovedharmonysearchalgorithms based on particle Swarm optimizer. In International Conference on Intelligent Computing(pp.605-613).doi:10.1007/978-3-642-39482-9_70
  82. Streichert,F.(2016).Introduction to Evolutionary Algorithms.UniversityofTuebingen. Sun,X.M.,Lv,X.Y.,&Duan,X.M.(2009).NovelQoSRoutingAlgorithmBased onCultural-SimulatedAnnealingAlgorithm.InSecond International Conference on Intelligent Networks and Intelligent Systems, ICINIS '09(pp.209-212).doi:10.1109/ ICINIS.2009.61
  83. Tamura, K., & Yasuda, K. (2016). Spiral Optimization Algorithm Using Periodic DescentDirections.SICE J. Control Meas. Syst. Integr.,9(3),134-143.doi:10.9746/ jcmsi.9.134
  84. Teng,R.,Leibnitz,K.,&Zhang,B.(2011).Immunesysteminspiredreliablequery disseminationinwirelesssensornetworks.InInternational Conference on Artificial Immune Systems(pp.282-293).doi:10.1007/978-3-642-22371-6_25
  85. Tripathi,A.,Gupta,P.,Trivedi,A.,&Kala,R.(2011).WirelessSensorNodePlacement UsingHybridGeneticProgrammingandGeneticAlgorithms.International Journal of Intelligent Information Technologies,7(2),63-83.doi:10.4018/jiit.2011040104
  86. Trivedi,S.(2008,January24).TheWorkingofaBirdSwarm.Onionesque Reality.
  87. Wachowicz,M.,Ong,R.,Renso,C.,&Nanni,M.(2011,November).Findingmoving flockpatternsamongpedestriansthroughcollectivecoherence.International Journal of Geographical Information Science,25(11),1849-1864.doi:10.1080/13658816.2 011.561209
  88. Wang,G.,Guo,L.,Duan,H.,Liu,L.,&Wang,H.(2012,June).DynamicDeployment of Wireless Sensor Networks by Biogeography Based Optimization Algorithm. J. Sens. Actuator Netw.,1(3),86-96.doi:10.3390/jsan1020086
  89. Wu,Z.,Zhao,Z.,Jiang,S.,&Zhang,X.(2012).PFSA: a novel fish swarm algorithm. In Internet of Things(pp.359-365).Springer.
  90. Xiao,Y.(2011).Bio-inspired computing and networking.CRCPress.doi:10.1201/ b10781
  91. Yang, X.-S. (2010). Bat Algorithm and Cuckoo Search: A Tutorial. In Nature inspired cooperative strategies for optimization (NICSO 2010)(pp.65-74).Springer. doi:10.1007/978-3-642-12538-6_6
  92. Yang, X.-S., & Deb, S. (2014). Cuckoo search: Recent advances and applications. Neural Computing & Applications,24(1),169-174.doi:10.1007/s00521-013-1367-1
  93. Yang,X.-S.,Karamanoglu,M.,Ting,T.O.,&Zhao,Y.-X.(2014).Applicationsand analysisofbioinspiredeaglestrategyforengineeringoptimization.Neural Computing & Applications,25(2),411-420.doi:10.1007/s00521-013-1508-6
  94. Yousif, A., Abdullah, A. H., Nor, S. M., & Bashir, M. B. (2012). Optimizing job schedulingforcomputationalgridbasedonfireflyalgorithm.In2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)(pp.97-101).
  95. Yousif,A.,Nor,S.M.,Abdullah,A.H.,&Bashir,M.B.(2014).ADiscreteFirefly AlgorithmforSchedulingJobsonComputationalGrid.InX.-S.Yang(Ed.),Cuckoo SearchandFireflyAlgorithm(pp.271-290).SpringerInternationalPublishing. Yu,S.,Su,S.,Lu,Q.,&Huang,L.(2014,December).Anovelwisestepstrategyfor fireflyalgorithm.International Journal of Computer Mathematics,91(12),2507-2513. doi:10.1080/00207160.2014.907405
  96. Zhang,Z.,Huangfu,W.,Long,K.,Zhang,X.,Liu,X.,&Zhong,B.(2013,July).On thedesigningprinciplesandoptimizationapproachesofbio-inspiredself-organized network:Asurvey.Science China. Information Sciences,56(7),1-28.
  97. Zhao,R.,&Tang,W.(2008).Monkeyalgorithmforglobalnumericaloptimization. J. Uncertain Syst.,2(3),165-176.
  98. Daneshwari I. Hatti completed her M.Tech from Visvesvaraya Technological University Belgaum, Karnataka. She is pursuing her PhD in the area of Resource Management in Internet of Things. Presently, she is serving as an Assistant Professor, Department of Electronics and Communication Engineering, BLDEA's Engineering College, Vijayapur, Karnataka. Her areas of interest include IoT, digital signal processing, computer communication networks, wireless networks, neural networks, and fuzzy logic. She has published 5 papers in referred national/ international conferences.
  99. Ashok V. Sutagundar completed his M. Tech from Visvesvaraya Technological University Belgaum, Karnataka. He pursued a PhD in the area of Content-Based Information Retrieval in wireless Networks using Mobile Agents. Presently he is serving as an Associate Professor, Department of Electronics and Communication Engineering, Basaveshwar Engineering College, Bagalkot, Karnataka. His areas of interest include signal and system, digital signal processing, digital image processing, multimedia networks, computer communication networks, wireless networks, mobile ad-hoc networks, and agent technology. He has published 25 national/ international refereed journals and 45 papers in referred national/international conferences.