Nature Inspired Computing for Wireless Networks Applications
2019, International Journal of Applied Evolutionary Computation
https://doi.org/10.4018/IJAEC.2019010101Abstract
Nature inspired computing (NIC) is a computing paradigm inspired by the attractive behavior of nature. NIC has influenced the researchers to perform optimization in many approaches using physics/chemistry-based algorithms and biology-based algorithms. Physics/chemistry-based algorithms include the water cycle, a galaxy base, or gravitational-based algorithms. Biology-based algorithms, namely bio-inspired and swarm intelligence-related algorithms are discussed with their importance in the field of wireless networks. A wireless network such as MANET's, VANET, AdHoc, and IoT are playing a vital role in all sectors. Some of the issues such as finding the optimal path in routing, clustering, dynamic allocation of motes, energy and lifetime of the network pertaining to a wireless network can be solved using an NIC approach. Algorithms derived by the inspiration from nature are discussed briefly in this article.
References (99)
- Abbasi,M.,Latiff,B.A.,Shafie,M.,&Chizari,H.(2014).Bioinspiredevolutionary algorithm based for improving network coverage in wireless sensor networks. The Scientific World Journal.
- Agarwal,P.,&Mehta,S.(2014).Nature-InspiredAlgorithms:State-of-Art,Problems andProspects.Nature,100(14).
- Ahmed, H. & Glasgow, J. (2012). Swarm intelligence: concepts, models and applications.
- Akl, S. G. (Ed.). (2007). A Reminiscent Study Of Nature Inspired Computation. In Unconventional computation: 6th international conference, UC 2007, Kingston, Canada, August 13-17, 2007: proceedings.NewYork:Springer.
- Al-Azzawi, M. K., Luo, J., & Li, R. (2015, February). Inspired Energy Efficient DataDeliveryBasedonRedundantDataEliminationusingDiscreteCuckooSearch Optimization.Int. J. Control Autom.,8(2),417-428.doi:10.14257/ijca.2015.8.2.39
- Allaboutbirds.org.(n.d.).Whydon'tbirdscollidewhentheyareflyingclosetogether intightflocks.Retrievedfromhttps://www.allaboutbirds.org/why-dont-birdscollide- when-they-are-flying-close-together-in-tight-flocks/
- Ammu, P. K., Sivakumar, K. C., & Rejimoan, R. (2013). Biogeography-based optimization-asurvey.Int.J.ElectronComput.Sci.Eng.,2(1),154-160.
- Antoniou,P.,Pitsillides,A.,Engelbrecht,A.,&Blackwell,T.(2010).Mimickingthe bird flocking behavior for controlling congestion in sensor networks. In 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)(p.17).
- Antoniou,P.,Pitsillides,A.,Engelbrecht,A.,Blackwell,T.,&Michael,L.(2011). Applyingswarmintelligencetoanovelcongestioncontrolapproachforwirelesssensor networks.InProceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies(p.78).doi:10.1145/2093698.2093776
- Aote,S.S.,Raghuwanshi,M.M.,&Malik,L.(2013).Abriefreviewonparticleswarm optimization limitations and future directions. International Journal of Computer Science Engineering IJCSE,2(5),196-200.
- Back, T., Foussette, C., & Krause, P. (2013). Contemporary evolution strategies. Springer.doi:10.1007/978-3-642-40137-4
- Bajec, I. L., Zimic, N., & Mraz, M. (2007, August). The computational beauty of flocking: Boids revisited. Mathematical and Computer Modelling of Dynamical Systems,13(4),331-347.doi:10.1080/13873950600883485
- Bellaachia,A.,&Bari,A.(2012).Aflockingbaseddataminingalgorithmfordetecting outliersincancergeneexpressionmicroarraydata.In2012 International Conference on Information Retrieval Knowledge Management (CAMP)(pp.305-311).
- Binitha,S.,&Sathya,S.S.(2012).Asurveyofbioinspiredoptimizationalgorithms. Int. J. Soft Comput. Eng.,2(2),137-151.
- Blas, N. G., de Mingo, L. F., & Penuela, J. C. (2009). Bio-Inspired Optimization Strategies:ASurvey.Retrievedfromhttps://csit.am/2009/proceedings/4AIMSS/2.pdf
- Blum, C., & Merkle, D. (Eds.). (2008). Swarm intelligence: introduction and applications.Berlin:Springer.doi:10.1007/978-3-540-74089-6
- Chandran, V., Nidhya, R., Kumar, A. D., & Thamaraiselvi, K. (2014, March). Retinal and cancer cell image segmentation for predicting the diseased images. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE)(pp.1-6).IEEE.
- Chawla,M.,&Duhan,M.(2015,July).BatAlgorithm:ASurveyoftheState-of-the- Art. Applied Artificial Intelligence, 29(6), 617-634. doi:10.1080/08839514.2015.1
- Chazelle,B.(2014,July).TheConvergenceofBirdFlocking.Journal of the Association for Computing Machinery,61(4),1-35.doi:10.1145/2629613
- Chen, X., Zhou, Y., & Luo, Q. (2014). A Hybrid Monkey Search Algorithm for ClusteringAnalysis.The Scientific World Journal,2014,1-16.PMID:24772039
- Civicioglu,P.,&Besdok,E.(2013,April).AconceptualcomparisonoftheCuckoo- search,particleswarmoptimization,differentialevolutionandartificialbeecolony algorithms.Artificial Intelligence Review,39(4),315-346.doi:10.1007/s10462-011- 9276-0 C l e r c , M . ( 2 0 0 6 ) . Pa r t i c l e s w a r m o p t i m i z a t i o n . L o n d o n , U K : I S T E . doi:10.1002/9780470612163
- Cui,Y.,Xu,K.,Xu,M.,&Wu,J.(2003).OptimalQoSroutingbasedonextended simulated annealing. In International Conference on Information Networking (pp. 553-562).doi:10.1007/978-3-540-45235-5_54
- Das, S. & Barani, S. (2015). A survey of nature inspired computing for energy optimizationinwirelesssensornetwork.Int. J. Computer Technology and Applications, 6(6),931-942.
- Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial foraging optimization algorithm: theoretical foundations, analysis, and application. In Foundations of Computational Intelligence(Vol.3,pp.23-55).Springer. Decastro,L.(2007,March).Fundamentalsofnaturalcomputing:Anoverview.Physics of Life Reviews,4(1),1-36.doi:10.1016/j.plrev.2006.10.002
- Dhivya,M.,Sundarambal,M.,&Anand,L.N.(2011).EnergyEfficientComputation ofDataFusioninWirelessSensorNetworksUsingCuckooBasedParticleApproach (CBPA).Int. J. Commun. Netw. Syst. Sci.,4(4),249-255.
- DiCaro,G.,Ducatelle,F.,&Gambardella,L.M.(2005,September).AntHocNet:An adaptivenature-inspiredalgorithmforroutinginmobileadhocnetworks.Eur. Trans. Telecommun.,16(5),443-455.doi:10.1002/ett.1062
- Dill,L.M.(1983).Adaptiveflexibilityintheforagingbehavioroffishes.Canadian Journal of Fisheries and Aquatic Sciences,40(4),398-408.doi:10.1139/f83-058
- Dixit, M., Upadhyay, N., & Silakari, S. (2015). An Exhaustive Survey on Nature Inspired Optimization Algorithms. International Journal of Software Engineering and Its Applications,9(4),91-104.
- Eldos,T.,&AlQasim,R.(2013).OntheperformanceoftheGravitationalSearch Algorithm.International Journal of Advanced Computer Science Applications.
- Fathian, M., Shiran, G. R., & Jafarian-Moghaddam, A. R. (2016, May). Two New ClusteringAlgorithmsforVehicularAd-HocNetworkBasedonAntColonySystem. Wireless Personal Communications,88(2),413-413.doi:10.1007/s11277-016-3290-0
- Fister,I.Jr,Fister,D.,&Fister,I.(2013).Acomprehensivereviewofcuckoosearch: Variantsandhybrids.Int. J. Math. Model. Numer. Optim.,4(4),387-409.
- Fister,I.,Yang,X.-S.,&Brest,J.(2013).Acomprehensivereviewoffireflyalgorithms. Swarm and Evolutionary Computation,13,34-46.doi:10.1016/j.swevo.2013.06.001
- Fu, W., Johnston, M., & Zhang, M. (2010). Hybrid particle swarm optimisation algorithms based on differential evolution and local search. In Australasian Joint Conference on Artificial Intelligence(pp.313-322).doi:10.1007/978-3-642-17432- 2_32 Goyal,S.,&Patterh,M.S.(2014,November).WirelessSensorNetworkLocalization Based on Cuckoo Search Algorithm. Wireless Personal Communications, 79(1), 223-234.doi:10.1007/s11277-014-1850-8
- Guo, W., Chen, M., Wang, L., Mao, Y., & Wu, Q. (2016, January). A survey of biogeography-basedoptimization.Neural Computing & Applications.
- Hatamlou,A.(2013,February).Blackhole:Anewheuristicoptimizationapproach fordataclustering.Inf. Sci.,222,175-184.doi:10.1016/j.ins.2012.08.023
- Hatti,D.I.,Raju,S.,&Dixit,M.M.(2012).DesignofNeuralNetworkasDataFlow ModelforImageCompression.International Journal of Image Processing and Vision Sciences,1(3),22-26.
- Helmy,A.O.,Ahmed,S.,&Hassenian,A.E.(2014).ArtificialFishSwarmAlgorithm forEnergy-EfficientRoutingTechnique.InIntelligentSystems'2014(pp.509-519). Cham:SpringerInternationalPublishing.
- Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic algorithm for hierarchical wirelesssensornetworks.J. Netw.,2(5),87-97.
- Induja, S., & Eswaramurthy, V. P. (2016). Bat Algorithm: An Overview and its Applications.Int J Adv Res Comput Commun Eng,5(1),448-451.
- Ituarte-Villarreal, C. M., Lopez, N., & Espiritu, J. F. (2012). Using the Monkey AlgorithmforHybridPowerSystemsOptimization.Procedia Computer Science,12, 344-349.doi:10.1016/j.procs.2012.09.082
- Jacqueline, S. (n.d.). Why Birds Flock. About.com. Retrieved from http://birding. about.com/od/birdbehavior/a/Why-Birds-Flock.htm
- Jamali,S.,Valipoor,K.,&Analoui,M.(2009).Nature-InspiredApproachforStable CongestionControlintheInternet.InInternational Conference on Future Computer and Communication ICFCC 2009(pp.131-135).
- Johnson,D.M.,Teredesai,A.M.,&Saltarelli,R.T.(2005)."Genetic programming in wireless sensor networks," in Genetic Programming(pp.96-107).Springer.
- Kammerdiner,A.R.,Mucherino,A.,&Pardalos,P.M.(2009).Application of monkey search metaheuristic to solving instances of the multidimensional assignment problem. In Optimization and Cooperative Control Strategies(pp.385-397).Springer.
- Kapur,R.(2015).Reviewofnatureinspiredalgorithmsincloudcomputing.In2015 International Conference on Computing, Communication Automation (ICCCA)(pp. 589-594).
- Karaboga,D.,&Akay,B.(2009,August).AcomparativestudyofArtificialBeeColony algorithm.Applied Mathematics and Computation,214(1),108-132.doi:10.1016/j. amc.2009.03.090
- Kaur,S.P.,&Sharma,M.(2015,March).RadiallyOptimizedZone-DividedEnergy- AwareWirelessSensorNetworks(WSN)ProtocolUsingBA(BatAlgorithm).Journal of the Institution of Electronics and Telecommunication Engineers,61(2),170-179. doi:10.1080/03772063.2014.999833
- Kocer,H.E.,&Akca,M.R.(2014,November).AnImprovedArtificialBeeColony Algorithm with Local Search for Traveling Salesman Problem. Cybernetics and Systems,45(8),635-649.doi:10.1080/01969722.2014.970396
- Kotteeswaran, C., & Rajesh, A. (2014). A survey of diverse nature bio-inspired computing models. in 2014 2nd International Conference on Current Trends in Engineering and Technology (ICCTET)(pp.120-124).
- Kumar, S., Sharma, V. K., & Kumari, R. (2014). Improved onlooker bee phase in artificialbeecolonyalgorithm.arXiv:1407.5753
- Kumar,Y.,&Sahoo,G.(2014).Areviewongravitationalsearchalgorithmandits applicationsto data clustering&classification. International Journal of Intelligent SystemsandApplications,6(6),79.
- Li,J.,Dang,J.,Bu,F.,&Wang,J.(2014).AnalysisandImprovementoftheBacterial ForagingOptimizationAlgorithm.Journal of Computing Science and Engineering, 8(1),1-10.doi:10.5626/JCSE.2014.8.1.1
- Li,X.,Xu,L.,Wang,H.,Song,J.,&Yang,S.X.(2010,June).Adifferentialevolution- based routing algorithm for environmental monitoring wireless sensor networks. Sensors (Basel),10(6),5425-5442.doi:10.3390/s100605425PMID:22219670
- Mane,S.U.,&Gaikwad,P.G.(2014).Natureinspiredtechniquesfordataclustering.In 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA)(pp.419-424).doi:10.1109/CSCITA.2014.6839297
- Meng,J.,Guo,X.Y.,Lu,S.L.,Xiao,B.X.,&Wen,W.L.(2011).ModelingRooting inWheatUsingLindenmayerSystem.In2011 International Conference on Intelligent Computation Technology and Automation (ICICTA)(Vol.2,pp.121-124).
- Meng,X.-B.,Gao,X.Z.,Lu,L.,Liu,Y.,&Zhang,H.(2016,July).Anewbio-inspired optimisationalgorithm:BirdSwarmAlgorithm.Journal of Experimental & Theoretical Artificial Intelligence,28(4),673-687.doi:10.1080/0952813X.2015.1042530
- Merkel, S., Becker, C. W., & Schmeck, H. (2012, December). Firefly-inspired synchronizationforenergy-efficientdistanceestimationinmobilead-hocnetworks. In 2012 IEEE 31st International Performance Computing and Communications Conference (IPCCC)(pp.205-214).IEEE.
- Miettinen, K. (Ed.). (1999). Evolutionary algorithms in engineering and computer science: recent advances in genetic algorithms, evolution strategies, evolutionary programming, genetic programming, and industrial applications. NewYork:Wiley.
- Misra,S.,&Agarwal,P.(2012,March).Bio-inspiredgroupmobilitymodelformobile adhocnetworksbasedonbird-flockingbehavior.Soft Computing,16(3),437-450. doi:10.1007/s00500-011-0728-x Mukhopadhyay,M.(2014).ABriefSurveyonBioInspiredOptimizationAlgorithms forMolecularDocking.
- Nemati, M., Momeni, H., & Bazrkar, N. (2013). Binary Black Holes Algorithm. International Journal of Computers and Applications,79(6).
- Nemati, M., Salimi, R., & Bazrkar, N. (2003). Black Holes Algorithm: A Swarm Algorithm inspired of Black Holes for Optimization Problems.NewYork:Cambridge UniversityPress.
- Neshat,M.,Sepidnam,G.,Sargolzaei,M.,&Toosi,A.N.(2014,December).Artificial fishswarmalgorithm:Asurveyofthestate-of-the-art,hybridization,combinatorialand indicativeapplications.Artificial Intelligence Review,42(4),965-997.doi:10.1007/ s10462-012-9342-2
- Norouzi, A., Zaim, A. H., Norouzi, A., & Zaim, A. H. (2014, February). Genetic Algorithm Application in Optimization of Wireless Sensor Networks, Genetic AlgorithmApplicationinOptimizationofWirelessSensorNetworks.TheScientific WorldJournal.PMID:24693235
- Ochoa,A.,Garcia,Y.,&Yanez,J.(2010).Logistics Optimization Service Improved with Artificial Intelligence. In Soft Computing for Intelligent Control and Mobile Robotics(pp.57-65).Springer.
- Prusinkiewicz,P.,Hammel,M.,Hanan,J.,&Mech,R.(1996).L-systems:fromthe theorytovisualmodelsofplants.InProceedings of the 2nd CSIRO Symposium on Computational Challenges in Life Sciences.CollingwoodAustralia:Citeseer(pp.1-32).
- Pythaloka, D., Wibowo, A. T., & Sulistiyo, M. D. (2015). Artificial fish swarm algorithmforjobshopschedulingproblem.In2015 3rd International Conference on Information and Communication Technology (ICoICT)(pp.437-443).
- Quintao,F.P.,Nakamura,F.G.,&Mateus,G.R.(2007).Evolutionary algorithms for combinatorial problems in the uncertain environment of the wireless sensor networks. In Evolutionary Computation in Dynamic and Uncertain Environments(pp.197-222). Springer.doi:10.1007/978-3-540-49774-5_9
- Rafsanjani,M.K.,&Dowlatshahi,M.B.(2012).Usinggravitationalsearchalgorithm forfindingnearoptimalbasestationlocationintwo-tieredWSNs.Int. J. Mach. Learn. Comput.,2(4),377-380.doi:10.7763/IJMLC.2012.V2.148
- Recioui,A.(2016,September).ApplicationofaGalaxy-BasedSearchAlgorithmto MIMOSystemCapacityOptimization.Arabian Journal for Science and Engineering, 41(9),3407-3414.doi:10.1007/s13369-015-1934-0
- Reynolds,C.W.(1987,August).Flocks,herdsandschools:Adistributedbehavioral model. ACM SIGGRAPH computer graphics, 21(4), 25-34. Retrieved from http:// www.cs.toronto.edu/dt/siggraph97-course/cwr87/
- Sabri,N.M.,Puteh,M.,&Mahmood,M.R.(2013)."Areviewofgravitationalsearch algorithm,"Int J Adv.Soft Comput Appl,5(3),1-39.
- Sadollah,A.,Eskandar,H.,Bahreininejad,A.,&Kim,J.H.(2015,September).Water cyclealgorithmforsolvingmulti-objectiveoptimizationproblems.Soft Computing, 19(9),2587-2603.doi:10.1007/s00500-014-1424-4
- Saleem,M.,&Farooq,M.(2007).Beesensor: a bee-inspired power aware routing protocol for wireless sensor networks. In Applications of Evolutionary Computing (pp.81-90).Springer.
- Sarbazi-Azad,H.,&Zomaya,A.Y.(2014).Nature-Inspired Computing for Autonomic Wireless Sensor Networks. In Large Scale Network-Centric Distributed Systems(p. 760).Wiley-IEEEPress.
- Satapathy,S.C.,&Naik,A.(2013).ModifiedHarmonySearchforGlobalOptimization. InProceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) (pp. 293-301). Springer Berlin Heidelberg. doi:10.1007/978-3-642-35314-7_34
- Scheidler, A., Brutschy, A., Diwold, K., Merkle, D., & Middendorf, M. (2011). Ant Inspired Methods for Organic Computing. InH.Schmeck&T.Ungerer(Eds.), Organic Computing -A Paradigm Shift for Complex Systems (pp. 95-109). Basel: SpringerBasel.
- Shah-Hosseini,H.(2013,October).MultilevelThresholdingforImageSegmentation usingtheGalaxy-basedSearchAlgorithm.Int. J. Intell. Syst.Appl.,5(11),19-33.
- Sharma, R., & Sharma, R. (2015). Improved General Self Cuckoo Search based RoutingProtocolforWirelessSensorNetworks.International Journal of Computers and Applications,122(4).
- Sharma, V., Pattnaik, S. S., & Garg, T. (2012). A review of bacterial foraging optimizationanditsapplications.International Journal of Computers and Applications.
- Shih, F. Y., & Edupuganti, V. G. (2009, February). A differential evolution based algorithmforbreakingthevisualsteganalyticsystem.Soft Computing,13(4),345-353. doi:10.1007/s00500-008-0330-z Siddique,N.,&Adeli,H.(2015,December).NatureInspiredComputing:AnOverview and Some Future Directions. Cognitive Computation, 7(6), 706-714. doi:10.1007/ s12559-015-9370-8PMID:26693257
- Song,G.,Yu,H.,Niu,B.,&Li,L.(2013).Animprovedharmonysearchalgorithms based on particle Swarm optimizer. In International Conference on Intelligent Computing(pp.605-613).doi:10.1007/978-3-642-39482-9_70
- Streichert,F.(2016).Introduction to Evolutionary Algorithms.UniversityofTuebingen. Sun,X.M.,Lv,X.Y.,&Duan,X.M.(2009).NovelQoSRoutingAlgorithmBased onCultural-SimulatedAnnealingAlgorithm.InSecond International Conference on Intelligent Networks and Intelligent Systems, ICINIS '09(pp.209-212).doi:10.1109/ ICINIS.2009.61
- Tamura, K., & Yasuda, K. (2016). Spiral Optimization Algorithm Using Periodic DescentDirections.SICE J. Control Meas. Syst. Integr.,9(3),134-143.doi:10.9746/ jcmsi.9.134
- Teng,R.,Leibnitz,K.,&Zhang,B.(2011).Immunesysteminspiredreliablequery disseminationinwirelesssensornetworks.InInternational Conference on Artificial Immune Systems(pp.282-293).doi:10.1007/978-3-642-22371-6_25
- Tripathi,A.,Gupta,P.,Trivedi,A.,&Kala,R.(2011).WirelessSensorNodePlacement UsingHybridGeneticProgrammingandGeneticAlgorithms.International Journal of Intelligent Information Technologies,7(2),63-83.doi:10.4018/jiit.2011040104
- Trivedi,S.(2008,January24).TheWorkingofaBirdSwarm.Onionesque Reality.
- Wachowicz,M.,Ong,R.,Renso,C.,&Nanni,M.(2011,November).Findingmoving flockpatternsamongpedestriansthroughcollectivecoherence.International Journal of Geographical Information Science,25(11),1849-1864.doi:10.1080/13658816.2 011.561209
- Wang,G.,Guo,L.,Duan,H.,Liu,L.,&Wang,H.(2012,June).DynamicDeployment of Wireless Sensor Networks by Biogeography Based Optimization Algorithm. J. Sens. Actuator Netw.,1(3),86-96.doi:10.3390/jsan1020086
- Wu,Z.,Zhao,Z.,Jiang,S.,&Zhang,X.(2012).PFSA: a novel fish swarm algorithm. In Internet of Things(pp.359-365).Springer.
- Xiao,Y.(2011).Bio-inspired computing and networking.CRCPress.doi:10.1201/ b10781
- Yang, X.-S. (2010). Bat Algorithm and Cuckoo Search: A Tutorial. In Nature inspired cooperative strategies for optimization (NICSO 2010)(pp.65-74).Springer. doi:10.1007/978-3-642-12538-6_6
- Yang, X.-S., & Deb, S. (2014). Cuckoo search: Recent advances and applications. Neural Computing & Applications,24(1),169-174.doi:10.1007/s00521-013-1367-1
- Yang,X.-S.,Karamanoglu,M.,Ting,T.O.,&Zhao,Y.-X.(2014).Applicationsand analysisofbioinspiredeaglestrategyforengineeringoptimization.Neural Computing & Applications,25(2),411-420.doi:10.1007/s00521-013-1508-6
- Yousif, A., Abdullah, A. H., Nor, S. M., & Bashir, M. B. (2012). Optimizing job schedulingforcomputationalgridbasedonfireflyalgorithm.In2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)(pp.97-101).
- Yousif,A.,Nor,S.M.,Abdullah,A.H.,&Bashir,M.B.(2014).ADiscreteFirefly AlgorithmforSchedulingJobsonComputationalGrid.InX.-S.Yang(Ed.),Cuckoo SearchandFireflyAlgorithm(pp.271-290).SpringerInternationalPublishing. Yu,S.,Su,S.,Lu,Q.,&Huang,L.(2014,December).Anovelwisestepstrategyfor fireflyalgorithm.International Journal of Computer Mathematics,91(12),2507-2513. doi:10.1080/00207160.2014.907405
- Zhang,Z.,Huangfu,W.,Long,K.,Zhang,X.,Liu,X.,&Zhong,B.(2013,July).On thedesigningprinciplesandoptimizationapproachesofbio-inspiredself-organized network:Asurvey.Science China. Information Sciences,56(7),1-28.
- Zhao,R.,&Tang,W.(2008).Monkeyalgorithmforglobalnumericaloptimization. J. Uncertain Syst.,2(3),165-176.
- Daneshwari I. Hatti completed her M.Tech from Visvesvaraya Technological University Belgaum, Karnataka. She is pursuing her PhD in the area of Resource Management in Internet of Things. Presently, she is serving as an Assistant Professor, Department of Electronics and Communication Engineering, BLDEA's Engineering College, Vijayapur, Karnataka. Her areas of interest include IoT, digital signal processing, computer communication networks, wireless networks, neural networks, and fuzzy logic. She has published 5 papers in referred national/ international conferences.
- Ashok V. Sutagundar completed his M. Tech from Visvesvaraya Technological University Belgaum, Karnataka. He pursued a PhD in the area of Content-Based Information Retrieval in wireless Networks using Mobile Agents. Presently he is serving as an Associate Professor, Department of Electronics and Communication Engineering, Basaveshwar Engineering College, Bagalkot, Karnataka. His areas of interest include signal and system, digital signal processing, digital image processing, multimedia networks, computer communication networks, wireless networks, mobile ad-hoc networks, and agent technology. He has published 25 national/ international refereed journals and 45 papers in referred national/international conferences.