Book Cave: A Bookstore for Everyone
2023, International Journal for Research in Applied Science & Engineering Technology (IJRASET)
https://doi.org/10.22214/IJRASET.2023.49744Abstract
India as we know is a densely populated country and Every year more than 6 crores of Indians graduates from diverse backgrounds and with diversity in education. Almost similar number of students enter into colleges for taking various education to help them in seeking jobs. Many sectors have experienced tremendous growth in employment and thus masses opt for those sectors whereas in many sectors there is huge unemployment either due to low jobs availability or demand of skilled workers is required. Thinking of the each and every branch and when comparing it with the current employment in India and abroad, we will definitely find some points that will help in predicting the admissions and jobs scenarios in the fields of engineering and technology, management and pharmacy. Due to the changing technology and its requirement for getting employed in India and abroad, there has to improvements suggested by experts for predicting the Prediction of Admission & Jobs in Engineering & Technology /Management/Pharmacy with respect to demographic locations. This is not a one time process and needs to be done frequently as trends in the industry keep changing. Addressing this problem will introduce the required changes that would bring the current youth and upcoming generations in parallel with the students of other countries in terms of knowledge and skills in that domain. There is a need to forecast the current trend in the admissions and job sectors so as to blend the courses and syllabus accordingly to keep the youth employed and skilled with rapidly changing world. Here we will achieve it by using MaAhine Learning algorithm. I.
References (5)
- Subba Reddy.Y and Prof. P. Govindarajulu," A survey on data mining and machine learning techniques for internet voting and product/service selection", IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9 September 2017.
- Zhibo Wang, Jilong Liao, Qing Cao, Hairong Qi, and Zhi Wang, "Friend book: A Semanticbased Friend Recommendation System for Social Networks IEEE Transactions on Mobile Computing.
- J. Bobadilla et al. "Knowledge-Based System" Elsevier B.V.
- Hector Nunez, Miquel sanchez-Marre, Ulises Cortes, Joaquim Comas, Montse Martinez, Ignasi RodriguezRoda, Manel Poch, "A Comaprative study on the use of similarity measure in case based reasoning to improve the classification of environmental system situations,", ELSEVIER, Environmental Modeling and Software (2003)
- DINO IENCO, RUGGERO G. PENSA and ROSA MEO, "From Context to Distance: Learning Dissimilarity for categorical Data Clustering," Journal Vol. X. 10 2009, pages 1-10