Academia.eduAcademia.edu

Outline

Induced Color Current by Gluon in Background QCD

2001, International Journal of Modern Physics E

https://doi.org/10.1142/S0218301301000630

Abstract

By using the background field method of QCD in a path integral approach, we derive the equation of motion for the classical chromofield and that for the gluon in a system containing the gluon and the classical chromofield simultaneously. This inhomogeneous field equation contains an induced current term, which is the expectation value of a combination of composite operators including linear, square and cubic terms of the gluon field. We also derive identities for the current from gauge invariance and calculate the current at the leading order where the current induced by the gluon is opposite in sign to that induced by the quark. This is just the feature of the non-Abelian gauge field theory which has asymptotic freedom. Physically, the induced current can be treated as a "displacement" current in the polarized vacuum, and its effect is equivalent to redefining the field and the coupling constant.

References (18)

  1. see, e.g., G. Z. Zhou, Z. B. Su, B. L. Hao and L. Yu, Phys. Rep. 118, 1(1985);
  2. E. Calzetta and B. L. Hu, Phys. Rev. D37, 2878(1988).
  3. H-T Elze and U. Heinz, Phys. Rep. 183, 81(1989).
  4. S.K. Wong, Nuovo Cimento A 65, 689(1970).
  5. Proceedings of 14th International Conference on Ultra-relativistic Nucleus-Nucleus Col- lisions (Quark Matter 99), Torino, Italy, 10-15 May 1999 (To appear in Nucl. Phys. A).
  6. K. J. Eskola and M. Gyulassy, Phys. Rev. C47 (1993) 2329;
  7. R. S. Bhalerao and G. C. Nayak, Phys. Rev. C 61 (2000) 054907.
  8. L. McLerran and R. Venugopalan, Phys. Rev. D49, 2233(1994);
  9. B. S. DeWitt, Phys. Rev. 162, 1195 and 1239(1967); in Dynamic theory of groups and fields (Gordon and Breach, 1965).
  10. G. 't Hooft, Nucl. Phys. B62, 444(1973).
  11. L. F. Abbott, Nucl. Phys. B185, 189(1981).
  12. R. B. Sohn, Nucl. Phys. B273, 468(1986).
  13. H. Kluberg-Stern and J. B. Zuber, Phys. Rev. D12, 482(1975).
  14. B. W. Lee and J. Zinn-Justin, Phys. Rev. D7, 1049(1973).
  15. H.-Th. Elze, Z. Phys. C47, 647(1990).
  16. C. Itzykson and J.-B. Zuber, Quantum Field Theory(McGraw-Hill, 1985), p.185,323.
  17. R. Balescu, Equilibrium and Non-equilibrium Statistical Physics(Wiley, New York, 1973).
  18. D. D. Dietrich, G. C. Nayak and W. Greiner, hep-ph/0009178; hep-th/0007139; Sub- mitted to Phys. Rev. D.