Academia.eduAcademia.edu

Outline

Natural antioxidants–properties and possible applications

2018, Journal of Applied Biotechnology & Bioengineering

https://doi.org/10.15406/JABB.2018.05.00146

Abstract

There is an interest in the use of compounds able to prevent organism damages. Antioxidants are such compounds that can protect from cells damages caused by free radicals and may be used in the treatment and prevention on many diseases, such as cancer, cardiovascular disease, diabetes, brain stroke, skin diseases as well as they delay the aging process. There are many sources of antioxidants. They can be synthetic or natural and especially those derived from natural sources, demand special attention. Phenolic compounds are substances which mainly possess such activity, but also vitamins and minerals. There are a lot of antioxidants, but in that review, the chosen compounds with outstanding antioxidant activity, mainly used in pharmaceuticals and cosmetics were described. The review shows the activity of phenolic acids (ferulic acid and caffeic acid) and polyphenols (ellagic acid, curcumin, genistein, hydroxytyrosol, resveratrol) and vitamins (C and E).

References (98)

  1. Sarbak Z, Jachymska-Sarbak B, Sarbak A. Chemia w kosmetyce i kosmetologii. MedPharm: Poland; 2013.
  2. Andreassi M, Andreassi L. Antioxidants in dermocosmetology: from the laboratory to clinical application. J Cosmet Dermatol. 2003;2(3-4):153-160.
  3. Ganceviciene R, Liakou AI, Theodoridis A, et al. Skin anti-aging strategies. Dermatoendocrinol. 2012;4(3):308-319.
  4. Molski M. Chemia piękna. PWN, Poland: Warsaw; 2009.
  5. Matsui MS, Hsia A, Miller JD, et al. Non-Sunscreen Photoprotection: Antioxidants Add Value to a Sunscreen. J Investig Dermatol Symp Proc. 2009;14(1):56-59.
  6. Sellappan S, Akoh CC, Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem. 2002;50(8):2432-2438.
  7. Sri Balasubashini M, Rukkumani R, Menon VP. Protective effects of ferulic acid on hyperlipidemic diabetic rats. Acta Diabetol. 2003;40(3):118-122.
  8. Aaby K, Ekeberg D, Skrede G. Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J Agric Food Chem. 2007;55(11):4395-4406.
  9. Maurya DK, Devasagayam TP. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem Toxicol. 2010;48(12):3369-3373.
  10. Shirou Itagaki, Toshimitsu Kurokawa, Chie Nakata, et al. In vitro and in vivo antioxidant properties of ferulic acid: a comparative study with other natural oxidation inhibitors. Food Chemistry. 2009;114(2):466- 471.
  11. Murray JC, Burch JA, Streilein RD, et al. A topical antioxidant solution containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused by ultraviolet irradiation. J Am Acad Dermatol. 2008;59(3):418-425.
  12. Kullavanijaya P, Lim HW. Photoprotection. J Am Acad Dermatol. 2005;52(6):937-958.
  13. Copyright: ©2018 Żymańczyk-Duda et al. Citation: Żymańczyk-Duda E, Szmigiel-Merena B, Brzezińska-Rodak M. Natural antioxidants-properties and possible applications. J Appl Biotechnol Bioeng. 2018;5(4):251-258. DOI: 10.15406/jabb.2018.05.00146 13. Choi R, Kim BH, Naowaboot J, et al. Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Exp Mol Med. 2011;43(12):676-683.
  14. Bacanli M, Aydin S, Taner G, et al. The protective role of ferulic acid on sepsis-inducedoxidative damage in Wistar albino rats. Environ Toxicol Pharmacol. 2014;38(3):774-782.
  15. Sudheer AR, Muthukumaran S, Kalpana C, et al. Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes: a comparison with N- acetylcysteine. Toxicol In Vitro. 2007;21(4):576-585.
  16. Sudheer AR, Muthukumaran S, Devipriya N, et al. Influence of ferulic acid on nicotine-induced lipid peroxidation, DNA damage and inflammation in experimental rats as compared to N-acetylcysteine. Toxicology. 2008;243(3):317-329.
  17. Janicke B, Hegardt C, Krogh M, et al. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr Cancer. 2011;63(4):611-622.
  18. Ardiansyah, Ohsaki Y, Shirakawa H, et al. Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. J Agric Food Chem. 2008;56(8):2825-2830.
  19. Alam MA, Sernia C, Brown L. Ferulic acid improves cardiovascular and kidney structure and function in hypertensive rats. J Cardiovasc Pharmacol. 2013;61(3):240-249.
  20. Machado KC, Oliveira GL, De Sousa ÉB, et al. Spectroscopic studies on the in vitro antioxidant capacity of isopentyl ferulate. Chem Biol Interact. 2015;225:47-53.
  21. Gülçin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology. 2006;217(2-3):213-220.
  22. Liang G, Shi B, Luo W, et al. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behav Brain Funct. 2015;11:18.
  23. Mori H, Iwahashi H. Antioxidant activity of caffeic acid through a novel mechanism under UVA irradiation. J Clin Biochem Nutr. 2009;45(1):49-55.
  24. Nadim M, Auriol D, Lamerant-FayeL N, et al. Improvement of polyphenol properties upon glucosylation in a UV-induced skin cell ageing model. Int J Cosmet Sci. 2014;36(6):579-587.
  25. Amakura Y, Okada M, Tsuji S, et al. Determination of ellagic acid in fresh and processed fruits by HPLC. Journal of the Food Hygienic Society of Japan. 2000;41(3):206-211.
  26. Bae JY, Choi JS, Kang SW. Dietary compound ellagic acid alleviates skin winkle and inflammation induced by UV-B irradiation. Exp Dermatol. 2010;19(8):e182-e190.
  27. Thitilertdecha N, Teerawutgulrag A, Kilburn JD, et al. Identification of Major Phenolic Compounds from Nephelium lappaceum L. and Their Antioxidant Activities. Molecules. 2010;15(3):1453-1465.
  28. Hayes JE, Allen P, Brunton N, et al. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chemistry. 2011;126(3):948-955.
  29. Gu L, Deng WS, Liu Y, et al. Ellagic acid protects Lipopolysaccharide/D-galactosamine-induced acute hepatic injury in mice. Int Immunopharmacol. 2014;22(2):341-345.
  30. Hwang JM, Cho JS, Kim TH, et al. Ellagic acid protects hepatocytes from damage by inhibiting mitochondria production of reactive oxygen species. Biomed Pharmacother. 2010;64(4):264-270.
  31. Alsheikh-Ali AA, Kuvin JT, Karas RH. Risk of adverse events with fibrates. Am J Cardiol. 2004;94(7):935-938.
  32. Kannan MM, Quine SD. Ellagic acid ameliorates isoproterenol induced oxidative stress: evidence from electrocardiological, biochemical and histological study. Eur J Pharmacol. 2011;659(1):45-52.
  33. Kannan MM, Quine SD. Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism. 2013;62(1):52-61.
  34. Yu YM, Chang WC, Wu CH, et al. Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic acid. J Nutr Biochem. 2005;16(11):675-681.
  35. Chung YC, Lu LC, Tsai MH, et al. The Inhibitory Effect of Ellagic Acid on Cell Growth of Ovarian Carcinoma Cells. Evid Based Complement Alternat Med. 2013;2013:306705.
  36. Losso JN, Bansode RR, Trappey A, et al. In vitro anti-proliferative activities of ellagic acid. J Nutr Biochem. 2004;15(11):672-678.
  37. Edderkaoui M, Odinokova I, Ohno I, et al. Ellagic acid induces apoptosis through inhibition of nuclear factor 𝜅B in pancreatic cancer cells. World J Gastroenterol. 2008;14(23):3672-3680.
  38. Kim S, Liu Y, Gaber MW, et al. Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. J Biomed Mater Res B Appl Biomater. 2009;90(1):145-155.
  39. Mishra S, Vinayak M. Anti-carcinogenic action of ellagic acid mediated via modulation of oxidative stress regulated genes in Dalton lymphoma bearing mice. Leuk Lymphoma. 2011;52(11):2155-2161.
  40. Jimenez F, Mitts TF, Liu K, et al. Ellagic and Tannic Acids Protect Newly Synthesized Elastic Fibers from Premature Enzymatic Degradation in Dermal Fibroblast Cultures. J Invest Dermatol. 2006;126(6):1272-1280.
  41. Hwang BM, Noh EM, Kim JS, et al. Curcumin inhibits UVB-induced matrix metalloproteinase-1/3 expression by suppressing the MAPK- p38/JNK pathways in human dermal fibroblasts. Exp Dermatol. 2013;22(5):371-374.
  42. Li W, Wu M, Tang L, et al. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicol Appl Pharmacol. 2015;282(2):175-183.
  43. Zeng C, Zhong P, Zhao Y, et al. Curcumin protects hearts from FFA- induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J Mol Cell Cardiol. 2015;79:1-12.
  44. Cutrignelli A, Lopedota A, Denora N, et al. A New Complex of Curcumin with Sulfobutylether-_-Cyclodextrin:Characterization Studies and In Vitro Evaluation of Cytotoxic and Antioxidant Activity on HepG-2 Cells. J Pharm Sci. 2014;103(12):3932-3940.
  45. Bhaskar Rao A, Prasad E, Deepthi SS, et al. Synthesis and Biological Evaluation of Glucosyl Curcuminoids. Arch Pharm (Weinheim). 2014;347(11):834-839.
  46. Adamczyk K, Jurzak M, Garncarczyk A, et al. Biological activity of genistein with cosmetic application. Pol J Cosmetol. 2014;17(2):114-117.
  47. Wang YN, Wu W, Chen HC, et al. Genistein protects against UVB- induced senescence-like characteristics in human dermal fibroblasts by p66Shc down-regulation. J Dermatol Sci. 2010;58(1):19-27.
  48. Alam M, Gladstone HB, Tung RC. Cosmetic Dermatology. Elsevier & Urban Partner, 2009. Copyright: ©2018 Żymańczyk-Duda et al. Citation: Żymańczyk-Duda E, Szmigiel-Merena B, Brzezińska-Rodak M. Natural antioxidants-properties and possible applications. J Appl Biotechnol Bioeng. 2018;5(4):251-258. DOI: 10.15406/jabb.2018.05.00146
  49. Grynkiewicz G, Achmatowicz O, Pucko W. Bioaktywny izoflawon genisteina-perspektywy zastosowań medycznych. Postępy Fitoterapii. 2000;3:15-20.
  50. Foti P, Erba D, Riso P, et al. Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Arch Biochem Biophys. 2005;433(2):421-427.
  51. Gupta SK, Dongare S, Mathur R, et al. Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Mol Cell Biochem. 2015;408(1-2):63-72.
  52. Soltani Z, Khaksari M, Jafari E, et al. Is genistein neuroprotective in traumatic brain injury? Physiol Behav. 2015;152(Pt A):26-31.
  53. Javanbakht MH, Sadria R, Djalali M, et al. Soy protein and genistein improves renal antioxidant status in experimental nephrotic syndrome. Nefrologia. 2014;34(4):483-490.
  54. Amiot MJ, Fleuriet A, Macheix JJ. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 1986;34(5):823-826.
  55. Bonoli M, Bendini A, Cerretani L, et al. Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J Agric Food Chem. 2004;52(23):7026-7032.
  56. Loru D, Incani A, Deiana M, et al. Protective effect of hydroxytyrosol and tyrosol against oxidative stress in kidney cells. Toxicol Ind Health. 2009;25(4-5):301-310.
  57. Rietjens SJ, Bast A, Haenen GR. New insights into controversies on the antioxidant potential of the olive oil antioxidant hydroxytyrosol. J Agric Food Chem. 2007;55(18):7609-7614.
  58. Umeno A, Takashima M, Murotomi K, et al. Radical-scavenging Activity and Antioxidative Effects of Olive Leaf Components Oleuropein and Hydroxytyrosol in Comparison with Homovanillic Alcohol. J Oleo Sci. 2015;64(7):793-800.
  59. Han J, Talorete TP, Yamada P, et al. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology. 2009;59(1):45-53.
  60. Sun L, Luo C, Liu J. Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation. Food Funct. 2014;5(8):1909-1914.
  61. Corona G, Deiana M, Incani A, et al. Hydroxytyrosol inhibits the proliferation of human colon adenocarcinoma cells through inhibition of ERK1/2 and cyclin D1. Mol Nutr Food Res. 2009;53(7):897-903.
  62. Guo W, An Y, Jiang L, et al. The Protective Effects of Hydroxytyrosol Against UVB-induced DNA Damage in HaCaT cells. Phytother Res. 2010;24(3):352-359.
  63. Salucci S, Burattini S, Curzi D, et al. Antioxidants in the prevention of UVB-induced keratynocyte apoptosis. J Photochem Photobiol B. 2014;141:1-9.
  64. Burattini S, Salucci S, Baldassarri V, et al. Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate. Food Chem Toxicol. 2013;55:248-256.
  65. Zheng A, Li H, Xu J, et al. Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: role of AMP-activated protein kinase activation. Br J Nutr. 2015;113(11):1667-1676.
  66. Tagliafierro L, Officioso A, Sorbo S, et al. The protective role of olive oil hydroxytyrosol against oxidative alterations induced by mercury in human erythrocytes. Food Chem Toxicol. 2015;82:59-63.
  67. Silva S, Sepodes B, Rocha J, et al. Protective effects of hydroxytyrosol- supplemented refined olive oil in animal modelsof acute inflammation and rheumatoid arthritis. J Nutr Biochem. 2015;26(4):360-368.
  68. Trujillo M, Mateos R, Collantes de Teran L, et al. Lipophilic Hydroxytyrosol Esters. Antioxidant Activity in Lipid Matrices and Biological Systems. J Agric Food Chem. 2006;54(11):3779-3785.
  69. Procopio A, Celia C, Nardi M, et al. Lipophilic Hydroxytyrosol Esters: Fatty Acid Conjugates for Potential Topical Administration. J Nat Prod. 2011;74(11):2377-2381.
  70. Ball S. Antyoksydanty w medycynie i zdrowiu człowieka. Wyd Medyk, Poland: Warszawa; 2001.
  71. Li C, Xu X, Tao Z, et al. Resveratrol dimers, nutritional components in grape wine, are selective ROS scavengers and weak Nrf2 activators. Food Chem. 2015;173:218-223.
  72. Zhang Y, Shen Y, Yongchao Zhu, et al. Assessment of the correlations between reducing power, scavenging DPPH activity and anti-lipid- oxidation capability of phenolic antioxidants. LWT -Food Science and Technology. 2015;63(1):569-574.
  73. He S, Jiang L, Wu B, et al. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher. Biochem Biophys Res Commun. 2009;379(2):283-287.
  74. Zhang HX, Duan GL, Wang CN, et al. 2014. Protective effect of resveratrol against endotoxemia-induced lung injury involves the reduction of oxidative/nitrative stress. Pulm Pharmacol Ther. 2014;27(2):150-155.
  75. Aziz MH, Afaq F, Ahmad N. Prevention of Ultraviolet-B Radiation Damage by Resveratrol in Mouse Skin Is Mediated via Modulation in Survivin. Photochem Photobiol. 2005;81(1):25-31.
  76. Park K, Lee JH. Protective effects of resveratrol on UVB-irradiated HaCaT cells through attenuation of the caspase pathway. Oncol Rep. 2008;19(2):413-417.
  77. Wu Y, Jia LL, Zheng YN, et al. Resveratrate protects human skin from damage due to repetitive ultraviolet irradiation. J Eur Acad Dermatol Venereol. 2013;27(3):345-350.
  78. Lin JF, Wu S, Huang SS, et al. Resveratrol Protects Left Ventricle by Increasing Adenylate Kinase 1 and Isocitrate Dehydrogenase Activities in Rats with Myocardial Infarction. Chin J Physiol. 2011;54(6):406-412.
  79. Lin JF, Lin SM, Chih CL, et. al. Resveratrol reduces infarct size and improves ventricular function after myocardial ischemia in rats. Life Sci. 2008;83(9-10):313-317.
  80. Fukuda S, Kaga S, Zhan L,et al. Resveratrol Ameliorates Myocardial Damage by Inducing Vascular Endothelial Growth Factor- Angiogenesis and Tyrosine Kinase Receptor Flk-1. Cell Biochem Biophys. 2006;44(1):43-49.
  81. Chen YR, Yi FF, Li XY, et al. Resveratrol Attenuates Ventricular Arrhythmias and Improves the Long-Term Survival in Rats with Myocardial Infarction. Cardiovasc Drugs Ther. 2008;22(6):479-485.
  82. Chen CJ, Yu W, Fu YC, et al. Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem Biophys Res Commun. 2009;378(3):389-393.
  83. Xu Q, Hao X, Yang Q, et al. Resveratrol prevents hyperglycemia- induced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase. Biochem Biophys Res Commun. 2009;388(2):389-394.
  84. Molski M. Nowoczesna kosmetologia. Tom 2 PWN, Poland: Warsaw; 2014.
  85. Sikorski Z. Chemia żywności. Tom 3. Wydawnictwo Naukowo- Techniczne, Poland: Warszawa; 2007. Copyright: ©2018 Żymańczyk-Duda et al. Citation: Żymańczyk-Duda E, Szmigiel-Merena B, Brzezińska-Rodak M. Natural antioxidants-properties and possible applications. J Appl Biotechnol Bioeng. 2018;5(4):251-258. DOI: 10.15406/jabb.2018.05.00146
  86. Wawer I. Suplementy dla Ciebie. Wektor, Poland: Warsaw; 2009.
  87. Adamski Z, Kaszuba A. Dermatologia dla kosmetologów. Elsevier Urban & Partner, Poland: Wroclaw; 2010.
  88. Ramful D, Tarnus E, Aruoma OI, et al. Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Research International. 2011;44(7):2088-2099.
  89. Ellulu MS, Rahmat A, Patimah I, et al. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Devel Ther. 2015;1;9:3405-3412.
  90. Haftek M, Mac-Mary S, Le Bitoux MA, et al. Clinical, biometric and structural evaluation of the long-term effects of a topical treatment with ascorbic acid and madecassoside in photoaged human skin. Exp Dermatol. 2008;17(11):946-952.
  91. Wu W, Su M, Li T, et al. Cantharidin-induced liver injuries in mice and the protective effect of vitamin C supplementation. Int Immunopharmacol. 2015;28(1):182-187.
  92. Liang T, Chen X, Su M, et al. Vitamin C exerts beneficial hepatoprotection against Concanavalin A-induced immunological hepatic injury in mice through inhibition of NF-kB signal pathway. Food Funct. 2014;5(9):2175-2182.
  93. Rutkowski M, Grzegorczyk K, Chojnacki J, et al. Antioxidative properties of vitamin E as a new approach to its applications in therapy. Pol Merk Lek. 2006;20:609-614.
  94. Abla MJ, Banga AK. Formulation of tocopherol nanocarriers and in vitro delivery into human skin. Int J Cosmet Sci. 2014;36(3):239-246.
  95. Pedrelli VF, Lauriola MM, Pigatto PD. Clinical evaluation of photoprotective effect by a topical antioxidants combination (tocopherols and tocotrienols). J Eur Acad Dermatol Venereol. 2012;26(11):1449-1453.
  96. Cuce G, Çetinkaya S, Koc T, et al. Chemoprotective effect of vitamin E in cyclophosphamide-induced hepatotoxicity in rats. Chem Biol Interact. 2015;232:7-11.
  97. Pawar VK, Panchal SB, Singh Y, et al. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. J Control Release. 2014;196:295-306.
  98. Danhier F, Kouhé TT, Duhem N, et al. Vitamin E-based micelles enhance the anticancer activity of doxorubicin. Int J Pharm. 2014;476(1-2):9-15.