UJRS A 2116566 Published
https://doi.org/10.1080/07038992.2022.2116566Abstract
Unmanned Aerial Vehicle (UAV) is treated as an effective technique for gathering high resolution aerial images. The UAV based aerial image collection is highly preferred due to its inexpensive and effective nature. However, automatic classification of aerial images poses a major challenging issue in the design of UAV, which could be handled by the deep learning (DL) models. This study designs a novel UAV assisted DL based image classification model (UAVDL-ICM) for Industry 4.0 environment. The proposed UAVDL-ICM technique involves an ensemble of voting based three DL models, namely Residual network (ResNet), Inception with ResNetv2, and Densely Connected Networks (DenseNet). Also, the hyperparameter tuning of these DL models takes place using a genetic programming (GP) approach. Finally, Oppositional Water Wave Optimization (OWWO) with Fully Connected Deep Neural networks (FCDNN) is employed for the classification of aerial images. A wide range of simulations takes place and the results are examined in terms of different parameters. A detailed comparative study highlighted the betterment of the UAVDL-ICM technique compared to other recent approaches.
References (28)
- Ahmed, U., Chun-Wei Lin, J., Srivastava, G., Mekala, M.S., and Jung, H.-Y. 2022. "Fuzzy active learning to detect OpenCL kernel heterogeneous machines in cyber physical systems." IEEE Transactions on Fuzzy Systems, pp. 1-1. doi:10.1109/TFUZZ.2022.3167158.
- Ahmed, U., Srivastava, G., Yun, U., and Lin, J.C.-W. 2022. "EANDC: An explainable attention network based deep adaptive clustering model for mental health treatment." Future Generation Computer Systems, Vol. 130: pp. 106-113. doi:10.1016/j.future.2021.12.008.
- Danishvar, M., Danishvar, S., Souza, F., Sousa, P., and Mousavi, A. 2021. "Coarse return prediction in a cement industry's closed grinding circuit system through a fully connected deep neural network (FCDNN) model." Applied Sciences, Vol. 11(No. 4): pp. 1361. doi:10.3390/ app11041361.
- Dhahri, H., Al Maghayreh, E., Mahmood, A., Elkilani, W., and Faisal Nagi, M. 2019. "Automated breast cancer diag- nosis based on machine learning algorithms." Journal of Healthcare Engineering, Vol. 2019: pp. 1-11. doi:10.1155/ 2019/4253641.
- Hayat, R.F., Aurangzeb, S., Aleem, M., Srivastava, G., and Lin, J.C.-W. 2022. "ML-DDoS: A blockchain-based multi- level DDoS mitigation mechanism for IoT environments." IEEE Transactions on Engineering Management, pp. 1-14. doi:10.1109/TEM.2022.3170519.
- He, K., Zhang, X., Ren, S., and Sun, J. 2016. "Deep residual learning for image recognition." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.
- Hua, Y., Lobry, S., Mou, L., Tuia, D., and Zhu, X. 2020. "Learning multi-label aerial image classification under label noise: A regularization approach using word embeddings." In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, IEEE, pp. 525-528.
- Hua, Y., Mou, L., and Zhu, X.X. 2019. "Recurrently explor- ing class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification." ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 149: pp. 188-199. doi:10.1016/j. isprsjprs.2019.01.015.
- Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K.Q. 2017. "Densely connected convolutional networks." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700-4708.
- Huang, F., Qi, X., Li, C., and Hu, W. 2020. "Aerial image classification by learning quality-aware spatial pyramid model." Future Generation Computer Systems, Vol. 111: pp. 271-277. doi:10.1016/j.future.2020.04.047.
- Jamali, A., Mahdianpari, M., Brisco, B., Granger, J., Mohammadimanesh, F., and Salehi, B. 2021. "Wetland mapping using multi-spectral satellite imagery and deep convolutional neural networks: A case study in Newfoundland and Labrador, Canada." Canadian Journal of Remote Sensing, Vol. 47(No. 2):pp. 243-260. doi:10. 1080/07038992.2021.1901562.
- Jin, Y., Li, S., and Ren, L. 2020. "A new water wave opti- mization algorithm for satellite stability." Chaos, Solitons & Fractals, Vol. 138: pp. 109793. doi:10.1016/j.chaos. 2020.109793.
- Kareem, R.S.A., Ramanjineyulu, A.G., Rajan, R., Setiawan, R., Sharma, D.K., Gupta, M.K., Joshi, H., Kumar, A., Harikrishnan, H., and Sengan, S. 2021. "Multilabel land cover aerial image classification using convolutional neural networks." Arabian Journal of Geosciences, Vol. 14(No. 17): pp. 1-18. doi:10.1007/s12517-021-07791-z.
- Kyrkou, C., and Theocharides, T. 2019. "Deep-learning- based aerial image classification for emergency response applications using unmanned aerial vehicles." CVPR Workshops, pp. 517-525.
- Kyrkou, C., and Theocharides, T. 2020. "EmergencyNet: Efficient aerial image classification for drone-based emer- gency monitoring using atrous convolutional feature fusion." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13: pp. 1687-1699. doi:10.1109/JSTARS.2020.2969809.
- Kyrkou, C., Timotheou, S., Kolios, P., Theocharides, T., and Panayiotou, C.G. 2018, January. "Optimized vision- directed deployment of UAVs for rapid traffic mon- itoring." In 2018 IEEE International Conference on Consumer Electronics (ICCE), IEEE, pp. 1-6.
- Liu, Y., Han, Z., Chen, C., Ding, L., and Liu, Y. 2020. "Eagle-eyed multitask CNNs for aerial image retrieval and scene classification." IEEE Transactions on Geoscience and Remote Sensing, Vol. 58(No. 9): pp. 6699-6721. no. doi:10.1109/TGRS.2020.2979011.
- Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., and Zhang, Y. 2018. "Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery." Remote Sensing, Vol. 10(No. 7): pp. 1119. doi:10.3390/ rs10071119.
- Marasovi c, T., and Papi c, V. 2019. "Person classification from aerial imagery using local convolutional neural net- work features." International Journal of Remote Sensing, Vol. 40(No. 24): pp. 9084-9102. doi:10.1080/01431161. 2019.1597312.
- Nguyen, D.T., Joty, S., Imran, M., Sajjad, H., and Mitra, P. 2016. "Applications of online deep learning for crisis response using social media information." arXiv preprint arXiv:1610.01030.
- Petrovska, B., Atanasova-Pacemska, T., Corizzo, R., Mignone, P., Lameski, P., and Zdravevski, E. 2020. "Aerial scene clas- sification through fine-tuning with adaptive learning rates and label smoothing." Applied Sciences, Vol. 10(No. 17): pp. 5792. doi:10.3390/app10175792.
- Sameen, M.I., Pradhan, B., and Aziz, O.S. 2018. "Classification of very high resolution aerial photos using spectral-spatial convolutional neural networks." Journal of Sensors, Vol. 2018: pp. 1-12. doi:10.1155/2018/7195432.
- Tizhoosh, H.R. 2005. "Opposition-based learning: a new scheme for machine intelligence." In International confer- ence on computational intelligence for modelling, control and automation and international conference on intelli- gent agents, web technologies and internet commerce (CIMCA-IAWTIC'06), IEEE, vol. 1, pp. 695-701.
- Wang, Y., Quan, Z., Li, J., Han, Y., Li, H., and Li, X. 2018. "A retrospective evaluation of energy-efficient object detection solutions on embedded devices." In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, pp. 709-714.
- Xu, S., Fang, T., Huo, H., and Li, D. 2009. "A novel method of aerial image classification based on attention-based local descriptors." Procedia Earth and Planetary Science, Vol. 1(No. 1): pp. 1133-1139. doi:10.1016/j.proeps.2009. 09.174.
- Zhang, S., Wu, G., Gu, J., and Han, J. 2020. "Pruning con- volutional neural networks with an attention mechanism for remote sensing image classification." Electronics, Vol.
- 9(No. 8): pp. 1209. doi:10.3390/electronics9081209.
- Zhao, R., Luo, Q., and Zhou, Y. 2017. "Elite opposition- based social spider optimization algorithm for global function optimization." Algorithms, Vol. 10(No. 1): pp. 9. doi:10.3390/a10010009