On spline quasi-interpolation through dimensions
ANNALI DELL'UNIVERSITA' DI FERRARA
https://doi.org/10.1007/S11565-022-00427-4Abstract
The approximation of functions and data in one and high dimensions is an important problem in many mathematical and scientific applications. Quasi-interpolation is a general and powerful approximation approach having many advantages. This paper deals with spline quasi-interpolants and its aim is to collect the main results obtained by the authors, also in collaboration with other researchers, in such a topic through spline dimension, i.e. in the 1D, 2D and 3D setting, highlighting the approximation properties and the reconstruction of functions and data, the applications in numerical integration and differentiation and the numerical solution of integral and differential problems.
References (84)
- Aimi, A., Calabrò, F., Falini, A., Sampoli, M.L., Sestini, A.: Quadrature formulas based on spline quasi- interpolation for hypersingular integrals arising in IgA-SGBEM. Comput. Methods Appl. Mech. Eng. 372, 113441 (2020)
- Allouch, C., Remogna, S., Sbibih, D., Tahrichi, M.: Superconvergent methods based on quasi- interpolating operators for fredholm integral equations of the second kind. Appl. Math. Comput. 404, 1-14 (2021)
- Barrera, D., Ibáñez, M.J., Remogna, S.: On the construction of trivariate near-best quasi-interpolants based on C 2 quartic splines on type-6 tetrahedral partitions. J. Comput. Appl. Math. 311, 252-261 (2017)
- Barrera, D., Elmokhtari, F., Sbibih, D.: Two methods based on bivariate spline quasi-interpolants for solving Fredholm integral equations. Appl. Numer. Math. 127, 78-94 (2018)
- Barrera, D., Dagnino, C., Ibáñez, M.J., Remogna, S.: Trivariate near-best blending spline quasi- interpolation operators. Num. Algor. 78, 217-241 (2018)
- Barrera, D., Dagnino, C., Ibáñez, M.J., Remogna, S.: Some results on cubic and quartic quasi- interpolation of optimal approximation order on type-1 triangulations. Rend. Semin. Mat. Univ. Politec. Torino 76(2), 29-38 (2018)
- Barrera, D., Ibáñez, M.J., Jiménez-Molinos, F., Roldán, A.M., Roldán, J.B.: A spline quasi-interpolation based method to obtain the reset voltage in Resistive RAMs in the charge-flux domain. J. Comput. Appl. Math. 354, 326-333 (2019)
- Barrera, D., Dagnino, C., Ibáñez, M.J., Remogna, S.: Point and differential C 1 quasi-interpolation on three direction meshes. J. Comput. Appl. Math. 354, 373-389 (2019)
- Barrera, D., Dagnino, C., Ibáñez, M.J., Remogna, S.: Quasi-interpolation by C 1 quartic splines on type-1 triangulations. J. Comput. Appl. Math. 349, 225-238 (2019)
- Barrera, D., Dagnino, C., Ibáñez, M.J., Remogna, S.: A trivariate near-best blending quadratic quasi- interpolant. Math. Comput. Simulation 176, 25-35 (2020)
- Barrera, D., El Mokhtari, F., Ibáñez, M.J., Sbibih, D.: Non-uniform quasi-interpolation for solving Hammerstein integral equations. Int. J. of Comput. Math. 97, 72-84 (2020)
- Barrera, D., Eddargani, S., Lamnii, A.: Uniform algebraic hyperbolic spline quasi-interpolant based on mean integral values. Comput. and Math. Methods 3, e1123 (2021)
- de Boor, C.: A practical guide to splines. Springer, Berlin, Heidelberg, New York (1978)
- de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer-Verlag, New York (1993)
- Bouhiri, S., Lamnii, A., Lamnii, M.: Cubic quasi-interpolation spline collocation method for solving convection-diffusion equations. Math. Comput. Simul. 164, 33-45 (2019)
- Bouhiri, S., Lamnii, A., Lamnii, M., Zidna, A.: A C 2 spline quasi-interpolant for fitting 3D data on the sphere and applications. Math. Comput. Simul. 164, 46-62 (2019)
- Bracco, C., Giannelli, C., Sestini, A.: Adaptive scattered data fitting by extension of local approxima- tions to hierarchical splines. Comput. Aided Geom. Des. 52-53, 90-105 (2017)
- Buhmann, M.D., Jäger, J.: Quasi-Interpolation. Cambridge University Press (2022)
- Calabrò, F., Falini, A., Sampoli, M.L., Sestini, A.: Efficient quadrature rules based on spline quasi- interpolation for application to IGA-BEMs. J. Comput. Appl. Math. 338, 153-167 (2018)
- Chui, C.K.: Multivariate Splines. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 54. SIAM, Philadelphia (1988)
- Conchin-Gubernati, A., Lamberti, P.: Multilevel quadratic spline integration. J. Comput. Appl. Mathem. 407, 114057 (2022)
- Costarelli, D., Seracini, M., Vinti, G.: A comparison between the sampling Kantorovich algorithm for digital image processing with some interpolation and quasi-interpolation methods. Appl. Math. Comput. 374, 125046 (2020)
- Cravero, I., Dagnino, C., Remogna, S.: NURBS on criss-cross triangulations and applications. Adv. An. 1, 95-113 (2016)
- Dagnino, C., Demichelis, V.: Spline Quasi-Interpolants with Boundary Interpolation Properties for Cauchy Principal Value Integrals. AIP Conference Proceedings 155-158 (2008)
- Dagnino, C., Lamberti, P.: Spline "quasi-interpolants" with boundary conditions on criss-cross trian- gulations. In: Cohen, A., Merrien, J.L., Schumaker, L.L. (eds.) Curve and Surface Fitting, Avignon 2006, Nashboro Press, Brentwood pp. 101-110 (2007)
- Dagnino, C., Perotto, S., Santi, E.: Product formulas based on spline approximation for the numerical evaluation of certain 2D CPV integrals. In: Approximation and Optimization (Cluj-Napoca, 1996, Transilvania, Cluj-Napoca 1, 241-250 (1997)
- Dagnino, C., Demichelis, V.: A Uniformly Convergent Sequence of Spline Quadratures for Cauchy Principal Value Integrals. J. Num. An., Ind. Appl. Math. 6, 83-93 (2011)
- Dagnino, C., Lamberti, P.: Numerical evaluation of Cauchy principal value integrals based on local spline approximation operators. J. Comput. Appl. Math. 76, 231-238 (1996)
- Dagnino, C., Lamberti, P.: Numerical integration of 2-D integrals based on local bivariate C 1 quasi- interpolating splines. Adv. Comput. Math. 8, 19-31 (1998)
- Dagnino, C., Lamberti, P.: Finite part integrals of local bivariate C 1 quasi-interpolating splines. Approx. Theory Appl. (New Series) 16(4), 68-79 (2000)
- Dagnino, C., Lamberti, P.: On the approximation power of bivariate quadratic C 1 splines. J. Comput. Appl. Math. 131, 321-332 (2001)
- Dagnino, C., Lamberti, P.: Some performances of local bivariate quadratic C 1 quasi-interpolating splines on nonuniform type-2 triangulations. J. Comput. Appl. Math. 173(1), 21-37 (2005)
- Dagnino, C., Lamberti, P.: On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains. J. Comput. Appl. Math. 221, 367-375 (2008)
- Dagnino, C., Rabinowitz, P.: Product integration of singular integrands based on quasi-interpolatory splines. Comput. Math. Appl. 33, 59-67 (1997)
- Dagnino, C., Remogna, S.: Local Univariate Spline Quasi 2 -Interpolants with Boundary Conditions. J. OF INF. AND COMPUT. SCI. 4, 497-504 (2007)
- Dagnino, C., Remogna, S.: Differentiation Based on Optimal Local Spline Quasi-Interpolants with Applications. AIP Conf. Proc. 4, 2025-2028 (2010)
- Dagnino, C., Remogna, S.: Quasi-interpolation based on the ZP-element for the numerical solution of integral equations on surfaces in R 3 . BIT Numer. Math. 57, 329-350 (2017)
- Dagnino, C., Santi, E.: Quadratures based on quasi-interpolating spline projectors for product singular integration. Studia Universitatis Babes-Bolyai. Mathematica 50, 35-47 (1996)
- Dagnino, C., Demichelis, V., Santi, E.: Numerical integration based on quasi-interpolating splines. Comput. 50, 146-163 (1993)
- Dagnino, C., Demichelis, V., Santi, E.: An algorithm for numerical integration based on quasi- interpolating splines. Num. Algorithms 5, 443-452 (1993)
- Dagnino, C., Demichelis, V., Santi, E.: Local spline approximation methods for singular product integration. Approx. Theory and its appl. 12, 37-51 (1996)
- Dagnino, C., Lamberti, P., Remogna, S.: B-spline bases for unequally smooth quadratic spline spaces on non-uniform criss-cross triangulations. Num. Algor. 61, 209-222 (2012)
- Dagnino, C., Lamberti, P., Remogna, S.: Numerical integration based on trivariate C 2 quartic spline quasi-interpolants. BIT Numer. Math. 53, 873-896 (2013)
- Dagnino, C., Remogna, S., Sablonnière, P.: Error bounds on the approximation of functions and par- tial derivatives by quadratic spline quasi-interpolants on non-uniform criss-cross triangulations of a rectangular domain. BIT Numer. Math. 53, 87-109 (2013)
- Dagnino, C., Remogna, S., Sablonnière, P.: On the solution of Fredholm integral equations based on spline quasi-interpolating projectors. BIT Numer. Math. 54, 979-1008 (2014)
- Dagnino, C., Lamberti, P., Remogna, S.: Near-best C 2 quartic spline quasi-interpolants on type-6 tetrahedral partitions of bounded domains. Calcolo 52, 475-494 (2015)
- Dagnino, C., Dallefrate, A., Remogna, S.: Spline quasi-interpolating projectors for the solution of nonlinear integral equations. J. Comput. Appl. Math. 354, 360-372 (2019)
- Eddargani, S., Lamnii, A., Lamnii, M., Sbibih, D., Zidna, A.: Algebraic hyperbolic spline quasi- interpolants and applications. J. Comput. Appl. Math. 347, 196-209 (2019)
- Falini, A., Kanduč, T.: A Study on Spline Quasi-interpolation Based Quadrature Rules for the Isoge- ometric Galerkin BEM. Springer INdAM Ser. 35, 99-125 (2019)
- Falini, A., Giannelli, C., Kanduč, T., Sampoli, M.L., Sestini, A.: An adaptive IgA-BEM with hierar- chical B-splines based on quasi-interpolation quadrature schemes. Int. J. Numer. Methods Eng. 117, 1038-1058 (2019)
- Falini, A., Kanduč, T., Sampoli, M.L., Sestini, A.: Cubature Rules Based on Bivariate Spline Quasi- Interpolation for Weakly Singular Integrals. Springer Proc. in Math. and Statistics 336, 73-86 (2021)
- Ibáñez, M.J., Barrera, D., Maldonado, D., Yáñez, R., Roldán, J.B.: Non-uniform spline quasi- interpolation to extract the series resistance in resistive switching memristors for compact modeling purposes. Math. 9, 2159 (2021)
- Jiang Qian, J., Shi, X., Wu, J., Gong, D.: Construction of cubature formulas via bivariate quadratic spline spaces over non-uniform type-2 triangulation. J. Comput. Math. 40, 205-230 (2022)
- Kumar, R., Choudhary, A., Baskar, S.: Modified cubic B-spline quasi-interpolation numerical scheme for hyperbolic conservation laws. Appl. Anal. 99, 158-179 (2020)
- Lai, M.J., Schumaker, L.L.: Spline functions on triangulations. Cambridge University Press (2007)
- Lamberti, P.: Numerical integration based on bivariate quadratic spline quasi-interpolants on bounded domains. BIT Numer. Math. 49, 565-588 (2009)
- Lamberti, P., Manni, C.: Tensioned quasi-interpolation via geometric continuity. Adv. Comput. Math. 20, 105-127 (2004)
- Lamberti, P., Saponaro, A.: Multilevel quadratic spline quasi-interpolation. Appl. Math. Comput. 373, 125047 (2020)
- Lamnii, A., Nour, M.Y., Sbibih, D., Zidna, A.: Generalized spline quasi-interpolants and applications to numerical analysis. J. Comput. Appl. Math. 408, 114100 (2022)
- Lyche, T., Schumaker, L.L.: Local spline approximation methods. J. Appr. Th. 15, 294-325 (1975)
- Mittal, R.C., Kumar, S., Jiwari, R.: A cubic B-spline quasi-interpolation method for solving two- dimensional unsteady advection diffusion equations. Int. J. Numer. Methods Heat Fluid Flow 30, 4281-4306 (2020)
- Patrizi, F., Manni, C., Pelosi, F., Speleers, H.: Adaptive refinement with locally linearly independent LR B-splines: Theory and applications. Comput. Methods Appl. Mech. Eng. 369, 113230 (2020)
- Pellegrino, E., Pitolli, F.: Applications of optimal spline approximations for the solution of nonlinear time-fractional initial value problems. Axioms 10, 249 (2021)
- Pellegrino, E., Pezza, L., Pitolli, F.: Quasi-Interpolant Operators and the Solution of Fractional Differ- ential Problems. Springer Proc. in Math. and Statistics 336, 207-218 (2021)
- Raffo, A., Biasotti, S.: Data-driven quasi-interpolant spline surfaces for point cloud approximation. Comput. and Graphics 89, 144-155 (2020)
- Raffo, A., Biasotti, S.: Weighted quasi-interpolant spline approximations of planar curvilinear profiles in digital images. Math. 9, 3084 (2021)
- Remogna, S.: Constructing Good Coefficient Functionals for Bivariate C 1 Quadratic Spline Quasi- Interpolants. In: Daehlen, M. et al. (eds.) Mathematical Methods for Curves and Surfaces, LNCS 5862, pp. 329-346. Springer-Verlag, Berlin Heidelberg (2010)
- Remogna, S.: Pseudo-spectral derivative of quadratic quasi-interpolant splines. Rend. Sem. Mat. Univ. Pol. Torino 67, 351-362 (2009)
- Remogna, S.: Quasi-interpolation operators based on the trivariate seven-direction C 2 quartic box spline. BIT Numer. Math. 51(3), 757-776 (2011)
- Remogna, S.: Bivariate C 2 cubic spline quasi-interpolants on uniform Powell-Sabin triangulations of a rectangular domain. Adv. Comput. Math. 36, 39-65 (2012)
- Remogna, S., Sablonnière, P.: On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains. Comput. Aided Geom. Des. 28, 89-101 (2011)
- Sablonnière, P.: Bernstein-Bézier methods for the construction of bivariate spline approximants. Com- put. Aided Geom. Des. 2, 29-36 (1985)
- Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic func- tions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae. Quart. Appl. Math. 4, 45-99 (1946)
- Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic func- tions. Part B. On the problem of osculatory interpolation, a second class of analytic approximation formulae. Quart. Appl. Math. 4, 112-141 (1946)
- Schoenberg, I.J.: Cardinal Spline Interpolation. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1973)
- Schumaker, L.L.: Spline Functions: Computational Methods. Society for Industrial and Applied Math- ematics, (2015)
- Schumaker, L.L.: Spline functions: Basic theory. Krieger Publishing Company, Malabar FL (1993)
- Scopus: Elsevier https://www.scopus.com
- Speleers, H.: Hierarchical spline spaces: quasi-interpolants and local approximation estimates. Adv. Comput. Math. 43, 235-255 (2017)
- Sun, L.Y., Zhu, C.G.: Cubic B-spline quasi-interpolation and an application to numerical solution of generalized Burgers-Huxley equation Adv. Mech. Eng. 12, 1687814020971061 (2020)
- Taghipour, M., Aminikhah, H.: A B-Spline Quasi Interpolation Crank-Nicolson Scheme for Solving the Coupled Burgers Equations with the Caputo-Fabrizio Derivative. Math. Problems in Eng. 2021, 8837846 (2021)
- Wang, R.H.: Multivariate Spline Functions and their Applications. Kluwer, Dordrecht (2001)
- Wang, R.H., Wu, J., Zhan, X.: Numerical integration based on multilevel quartic quasi-interpolants operator. Appl. Math. Comput. 227, 132-138 (2014)
- Zhang, J., Zheng, J., Gao, Q.: Numerical solution of the Degasperis-Procesi equation by the cubic B-spline quasi-interpolation method. Appl. Math. Comput. 324, 218-227 (2018)
Catterina Dagnino