Academia.eduAcademia.edu

Outline

New Perspectives on Interval Orders and Interval Graphs

Surveys in Combinatorics, 1997

https://doi.org/10.1017/CBO9780511662119.009

Abstract

Interval orders and interval graphs are particularly natural examples of two widely studied classes of discrete structures: partially ordered sets and undirected graphs. So it is not surprising that researchers in such diverse fields as mathematics, computer science, engineering and the social sciences have investigated structural, algorithmic, enumerative, combinatorial, extremal and even experimental problems associated with them. In this article, we survey recent work on interval orders and interval graphs, including research on on-line coloring, dimension estimates, fractional parameters, balancing pairs, hamiltonian paths, ramsey theory, extremal problems and tolerance orders. We provide an outline of the arguments for many of these results, especially those which seem to have a wide range of potential applications. Also, we provide short proofs of some of the more classical results on interval orders and interval graphs. Our goal is to provide fresh insights into the current status of research in this area while suggesting new perspectives and directions for the future.

References (129)

  1. M. Aigner and T. Andreae, The total interval number of a graph, J. Comb. Theory A 46 (1989), 7-21.
  2. N. Alon and E. R. Scheinerman, Degrees of freedom versus dimension for containment orders, Order 5 (1988), 11-16.
  3. L. Beineke and C. M. Zamfirescu, Connection digraphs and second order line graphs, Discrete Math. 39 (1982), 237-254.
  4. K. P. Bogart, An obvious proof of Fishburn's interval order theorem, Discrete Math. 118 (1993), 239-242.
  5. K. P. Bogart, A discrete proof of the Scott-Suppes representation theorem for semiorders, Technical Report PMA-TR91-173, Dartmouth College, 1991.
  6. K. P. Bogart, P. C. Fishburn, G. Isaak and L. Langley, Proper and unit tolerance graphs, Discrete Applied Math. (1995), 99-117.
  7. K. P. Bogart and G. Isaak, Proper and unit bitolerance orders and graphs, to appear.
  8. K. P. Bogart, M. Jacobson, L. Langley and F. R. McMorris, Tolerance orders and bipartite unit tolerance graphs, Technical Report PMA-TR93-107, Dartmouth College, 1993.
  9. K. P. Bogart and G. Isaak, Proper and unit bitolerance orders and graphs, Technical Report PMA-TR96-187, Dartmouth College, 1996.
  10. K. P. Bogart, R. Möhring and S. P. Ryan, Proper and unit trapezoid orders and graphs, to appear.
  11. K. P. Bogart, I. Rabinovitch and W. T. Trotter, A bound on the dimension of interval orders, J. Comb. Theory A 21 (1976), 219-238.
  12. K. P. Bogart and K. Stellpflug, Discrete representation theory for semiorders, Technical Report PMA-TR93-104, Dartmouth College, 1993.
  13. K. P. Bogart and A. N. Trenk, Bipartite tolerance orders, Discrete Math. (1994), 11-22.
  14. K. P. Bogart and W. T. Trotter, Maximal dimensional partially ordered sets III: A character- ization of Hiraguchi's inequality for interval dimension, Discrete Math. 15 (1976), 389-400.
  15. K. P. Bogart and W. T. Trotter, On the complexity of posets, Discrete Math. 16(1976), 71-82.
  16. K. S. Booth and G. S. Leuker, Testing for consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Computing System Sci. 13 (1976), 335-379.
  17. G. R. Brightwell, Semiorders and the 1/3-2/3 conjecture, Order 5 (1989), 369-380.
  18. G. R. Brightwell, Graphs and partial orders, in Graphs and Mathematics L. Beineke and R. J. Wilson, eds., to appear.
  19. G. R. Brightwell, S. Felsner and W. T. Trotter Balancing pairs and the cross product con- jecture Order 12 (1995), 327-349.
  20. G. R. Brightwell, P. C. Fishburn and P. W. Winkler, Interval orders and linear extension cycles, Ars Combinatoria 36 (1993), 283-288.
  21. G. R. Brightwell and E. R. Scheinerman, Fractional dimension of partial orders, Order 9 (1992), 139-158.
  22. G. R. Brightwell and P. W. Winkler, Sphere orders, Order 6 (1989), 235-240.
  23. Y.-W. Chang and D. B. West, Interval number and boxicity of digraphs, Proc. 8th Intl. Graph Theory Conf., to appear.
  24. M. Chrobak and M. Slusarek, On some packing problems relating to dynamical storage allocation, RAIRO Informatique Theoretique, to appear.
  25. V. Chvatál, Perfectly orderable graphs, in Topics on Perfect Graphs C. Berge and V. Chvatál, eds., North-Holland, Amsterdam (1984), 63-65.
  26. I. Dagan, M. C. Golumbic and R. Y. Pinter, Trapezoid graphs and their coloring, Discrete Appl. Math. 21 (1988), 35-46.
  27. R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math. 51 (1950), 161-165.
  28. U. Faigle, W. Kern, H. A. Kierstead and W. T. Trotter, The game chromatic number of some classes of Graphs, Ars Combinatoria 35 (1993), 143-150.
  29. S. Felsner, Tolerance graphs, interval orders: Combinatorial structure and algorithms, Ph. D. Thesis, Technische Universität Berlin, 1992.
  30. S. Felsner, A 3/2-aproximation algorithm for the jump number of interval orders, Order 6 (1990), 325-334.
  31. S. Felsner, M. Habib and R. Möhring, On the interplay between interval dimension and dimension, SIAM J. Discrete Math. 7 (1994), 11-22.
  32. S. Felsner and R. Möhring, Note: Semi-order dimension two is a comparability invariant, to appear.
  33. S. Felsner, R. Müller and L. Wernisch, Trapezoid graphs and generalizations, geometry and algorithms, Technical Report B 94-02, Freie Universität Berlin, 1994.
  34. S. Felsner and W. T. Trotter, On the fractional dimension of partially ordered sets, Discrete Math. 136 (1994), 101-117.
  35. S. Felsner and W. T. Trotter, Colorings of diagrams of interval orders and α-sequences of sets, Discrete Math. 144 (1995), 23-31.
  36. P. C. Fishburn, Intransitive indifference with unequal indifference intervals, J. Math. Psych. 7 (1970), 144-149.
  37. P. C. Fishburn, Interval Orders and Interval Graphs, John Wiley, New York, 1985.
  38. P. C. Fishburn, Interval orders and circle orders, Order 5 (1988), 225-234.
  39. P. C. Fishburn, W. Gehrlein and W. T. Trotter, Balance theorems for height-2 posets, Order 9 (1992), 43-53.
  40. P. C. Fishburn and W. T. Trotter, Angle Orders, Order 1 (1985), 333-343.
  41. P. C. Fishburn and W. T. Trotter, Linear extensions of semiorders: A maximization problem, Discrete Math. 103 (1992), 25-40.
  42. P. C. Fishburn, Generalizations of semiorders: A review note, to appear.
  43. P. C. Fishburn and W. T. Trotter, The dimension of split semi-orders, to appear.
  44. D. G. Fon-der-Flaass, A note on sphere containment orders, Order 10 (1993), 143-146.
  45. Z. Füredi, P. Hajnal, V. Rödl and W. T. Trotter, Interval orders and shift graphs, in Sets, Graphs and Numbers, A. Hajnal and V. T. Sos, eds., Colloq. Math. Soc. Janos Bolyai 60 (1991), 297-313.
  46. T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar. 18 (1967), 25-66.
  47. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
  48. M. C. Golumbic and C. Monma, A generalization of interval graphs with tolerances, Con- gressus Numerantium 35 (1982), 321-331.
  49. M. C. Golumbic, C. Monma and W. T. Trotter, Tolerance graphs, Discrete Applied Math. 9 (1984), 157-170.
  50. A. Ghoulá-Houri, Caracterisation des graphes non orientes dont on peut orienter les aretes de maniere a obtenir le graphe d'une relation d'order, C. R. Acad. Sci. Paris 254 (1962), 1370-1371.
  51. P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16 (1964), 539-548.
  52. T. L. Greenough, The representation and enumeration of interval orders, Ph. D. Thesis, Dartmouth College, 1974.
  53. J. Griggs, Extremal values of the interval number of a graph II, Discrete Math. 28 (1979), 37-47.
  54. J. R. Griggs and D. B. West, Extremal values of the interval number of a graph, SIAM J. Algebraic Disc. Meth. 1 (1980), 1-7.
  55. A. Gyárfás, Problems from the world surrounding perfect graphs, Zastowania Matematyki Applicationes Mathematicae 29 (1985), 413-441.
  56. A. Gyárfás, On the chromatic number of multiple interval graphs and overlap graphs, Discrete Math. 55 (1985), 161-166.
  57. A. Gyárfás and D. B. West, Multitrack interval number, Congressus Numer. 109 (1995), 109-116.
  58. M. Habib, D. Kelly R. Möhring, Interval dimension two is a comparability invariant, Discrete Math. 88 (1991), 211-229.
  59. A. Hajnal and J. Suŕanyi, Über die auflosung von graphen in vollständige teilgraphen, Ann. Univ. Sci. Budapest Eötvös. Sect. Math. 1 (1958), 113-121.
  60. L. Hopkins, D. West and W. T. Trotter, The interval number of a complete multi-partite graph, Discrete Applied Math. 18 (1984), 163-189.
  61. G. Hurlbert, A short proof that N 3 is not a circle order, Order 5 (1988), 235-237.
  62. M. Jacobson, F. R. McMorris and H. Mulder, An introduction to tolerance intersection graphs, in Graph Theory, Combinatorics and Applications, Y. Alavi, et. al., eds., John Wiley, New York (1991), 705-723.
  63. J. Kahn and M. Saks, Balancing poset extensions, Order 1 (1984), 113-126.
  64. D. Kelly and W. T. Trotter, Dimension theory for ordered sets, in Proceedings of the Sym- posium on Ordered Sets, I. Rival, et al., eds., Reidel, Dordrecht (1982), 171-212.
  65. H. A. Kierstead, An effective version of Dilworth's theorem, Trans. Amer. Math. Soc. 268 (1981), 63-77.
  66. H. A. Kierstead, The linearity of first-fit coloring of interval graphs, SIAM J. Discrete Math. 1 (1988), 526-530.
  67. H. A. Kierstead, A polynomial time approximation algorithm for dynamic storage allocation, Discrete Math. 88 (1991), 231-237.
  68. H. A. Kierstead, Coloring graphs on-line, to appear.
  69. H. A. Kierstead, G. McNulty and W. T. Trotter, A theory of recursive dimension for ordered sets, Order 1 (1984), 67-82.
  70. H. A. Kierstead, S. G. Penrice and W. T. Trotter, On-line coloring and recursive graph theory, SIAM J. Discrete Math. 7 (1994), 72-89.
  71. H. A. Kierstead and J. Qin, Coloring interval graphs with first-fit, Discrete Math. 144 (1995), 47-57.
  72. H. A. Kierstead and W. T. Trotter, An extremal problem in recursive combinatorics, Con- gressus Numerantium 33 (1981), 143-153.
  73. H. A. Kierstead and W. T. Trotter, On-line graph coloring, in On-Line Algorithms, L. Mc- Geoch and D. Sleator, eds., DIMACS Series in Discrete Mathematics and Theoretical Com- puter Science (1992), 85-92.
  74. H. A. Kierstead and W. T. Trotter, A note on removable pairs, in Graph Theory, Com- binatorics and Applications, Vol. 2, Y. Alavi, et al., eds., John Wiley, New York (1991), 739-742.
  75. H. A. Kierstead and W. T. Trotter, Planar graph coloring with an uncooperative partner, J. Graph Theory 18 (1994), 569-584.
  76. H. A. Kierstead and W. T. Trotter, The ramsey complexity of dimension for interval orders, to appear.
  77. S.S. Kislitsyn, Finite partially ordered sets and their associated sets of permutations, Matem- aticheskiye Zametki 4 (1968), 511-518.
  78. D. J. Kleitman and G. Markovsky, On Dedekind's problem: The number of isotone boolean functions, II, Trans. Amer. Math. Soc. 213 (1975), 373-390.
  79. T. M. Kratzke and D. B. West, The total interval number of a graph I: Fundamental classes, Discrete Math. 118 (1993), 145-156.
  80. T. M. Kratzke and D. B. West, The total interval number of a graph II: Trees and complexity, SIAM J. Discrete Math. 9 (1996), 339-348.
  81. A. Kostochka and J. Kratochvǐl, Covering and coloring polygon circle graphs, to appear.
  82. A. Kostochka and D. B. West, Total interval number for graphs of bounded degree, J. Graph Theory to appear.
  83. L. Langley, Interval tolerance orders and dimension, Ph. D. Thesis, Dartmouth College, (1993).
  84. C. B. Lekkerkerker and J. C. Boland, Representing a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962), 45-64.
  85. I.-J. Lin and D. B. West, Interval digraphs that are indifference digraphs, in Graph theory, Combinatorics, and Algorithms, Y. Alavi and A. Schwenk, eds., Wiley, New York, (1995), 751-765.
  86. I.-J. Lin, M. K. Sen and D. B. West, Classes of interval digraphs and 0, 1 matrices, to appear.
  87. T. Ma and J. Spinrad, An O(n 2 ) recognition algorithm for the 2-chain cover problem and related problems, Proceedings of the Second Symposium on Discrete Algorithms, SIAM, Philadelphia, 1991.
  88. T. Madej and D. B. West, The interval inclusion number of a partially ordered set, Discrete Math. 88 (1991), 259-277.
  89. T. Madej and D. B. West, The interval number of special posets and random posets, Discrete Math. 144 (1995), 67-74.
  90. J. Mitas, Tackling the jump number of interval orders, Order 8 (1991), 115-132.
  91. J. Nešetřil and V. Rödl, A short proof of the existence of highly chromatic graphs without short cycles, J. Comb. Theory B 27 (1979), 225-227.
  92. I. Rabinovitch, The Scott-Suppes theorem on semiorders, J. Math. Psychology 15 (1977), 209-212.
  93. I. Rabinovitch, The dimension of semiorders, J. Comb. Theory A 25 (1978), 50-61.
  94. I. Rabinovitch, An upper bound on the dimension of interval orders, J. Comb. Theory A 25 (1978), 68-71.
  95. I. Rabinovitch, The dimension theory of semiorders and interval orders, Ph. D. thesis, Dart- mouth College, 1973.
  96. K. Reuter, Removing critical pairs, Order 6 (1989), 107-118.
  97. F. S. Roberts, Discrete Mathematical Models, with Applications to Social, Biological and Environmental Problems, Prentice-Hall, Englewood Cliffs, 1976.
  98. F. S. Roberts, On the boxicity and cubicity of a graph, in Recent Progress in Combinatorics, W. T. Tutte, et. al., eds., Academic Press, New York, (1969), 301-310.
  99. F. S. Roberts, Indifference graphs, in Proof Techniques in Graph Theory, F. Harary, ed., Academic Press, New York, (1969), 139-146.
  100. C. D. Savage and P. W. Winkler, Monotone Gray codes and the middle levels problem, J. Comb. Theory Series A to appear.
  101. E. R. Scheinerman, The many faces of circle orders, Order 9 (1992), 343-348.
  102. E. R. Scheinerman, The maximum interval number of graphs of given genus, J. Graph Theory 11 (1987), 441-446.
  103. E. R. Scheinerman and J. C. Weirman, On circle containment orders, Order 4 (1988), 315- 318.
  104. E. R. Scheinerman and D. B. West, The interval number of a planar graph-three intervals suffice, J. Comb. Theory Series B 35 (1983), 224-239.
  105. D. Scott and P. Suppes, Foundational aspects of theories of measurement, J. Symbolic Logic (1958), 113-128.
  106. M. Sen, S. Das, A. B. Roy and D. B. West, Indifference digraphs: An analogue of interval graphs, J. Graph Theory 13 (1989), 189-202.
  107. M. Sen and B. K. Sanyal, Indifference digraphs: A generalization of indifference graphs, SIAM J. Discrete Math. 7 (1994), 157-165.
  108. J. Spencer, Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hungar. 22, (1971) 349-353.
  109. M. Syslo, The jump number problem on interval orders: A 3/2 approximation algorthm, Discrete Math. 144 (1995), 119-130.
  110. C. Thomassen, Interval representations of planar graphs, Discrete Math. to appear.
  111. W. T. Trotter, Dimension of the crown S k n , Discrete Math. 8 (1974), 85-103.
  112. W. T. Trotter, Inequalities in dimension theory for posets, Proc. Amer. Math. Soc. 47 (1975), 311-316.
  113. W. T. Trotter, A forbidden subposet characterization of an order dimension inequality, Math. Systems Theory 10 (1976), 91-96.
  114. W. T. Trotter, Combinatorial problems in dimension theory for partially ordered sets, Problemes Combinatoires et Theorie des Graphes, Colloque Internationeaux C.N.R.S., 260, (1978), 403-406.
  115. W. T. Trotter, A forbidden subgraph characterization of Roberts' inequality for boxicity, Discrete Math. 28 (1979), 303-313.
  116. W. T. Trotter, Stacks and splits of partially ordered sets, Discrete Math. 35 (1981), 229-256.
  117. W. T. Trotter, Graphs and Partially Ordered Sets, in Selected Topics in Graph Theory II, R. Wilson and L. Beineke, eds., Academic Press, New York, (1983), 237-268.
  118. W. T. Trotter, Interval graphs, interval orders, and their generalizations, in Applications of Discrete Mathematics, R. Ringeisen and F. Roberts, eds., SIAM, Philadelphia, (1988), 45-58.
  119. W. T. Trotter, Problems and conjectures in the combinatorial theory of ordered sets, Annals of Discrete Math. 41 (1989), 401-416.
  120. W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, The Johns Hopkins University Press, Baltimore, 1992.
  121. W. T. Trotter, Progress and new directions in dimension theory for finite partially ordered sets, in Extremal Problems for Finite Sets, P. Frankl, Z. Füredi, G. Katona and D. Miklós, eds., Bolyai Soc. Math. Studies, 3 (1994), 457-477.
  122. W. T. Trotter, Partially ordered sets, in Handbook of Combinatorics, R. L. Graham, M. Grötschel and L. Lovász, eds., Elsevier, Amsterdam, (1995), 433-480.
  123. W. T. Trotter, Graphs and partially ordered sets: recent results and new directions, in Surveys in Graph Theory, G. Chartrand and M. Jacobson, eds., Congressus Numerantium 116 (1996), 253-278.
  124. W. T. Trotter and F. Harary, On double and multiple interval graphs, J. Graph Theory 3 (1979), 205-211.
  125. W. T. Trotter and J. I. Moore, Characterization problems for graphs, partially ordered sets, lattices, and families of sets, Discrete Math. 16 (1976), 361-381.
  126. W. T. Trotter and J. I. Moore, The dimension of planar posets, J. Comb. Theory B 21 (1977), 51-67.
  127. W. T. Trotter and D. West, Poset boxicity of graphs, Discrete Math. 64 (1987), 105-107.
  128. W. T. Trotter and P. Winkler, Ramsey theory and sequences of random variables, Combi- natorics, Probability and Computing, to appear.
  129. H. S. Wittenshausen, On intersections of interval graphs, Discrete Math. 31 (1980 ), 211- 216. Department of Mathematics, Arizona State University, Tempe, Arizona 85287 U.S.A. E-mail address: trotter@ASU.edu