Academia.eduAcademia.edu

Outline

Super-resolution wavefront reconstruction

Astronomy & Astrophysics

https://doi.org/10.1051/0004-6361/202243954

Abstract

Context. Cutting-edge, ground-based astronomical instruments are fed by adaptive optics (AO) systems that are aimed at providing high performance down to the visible wavelength domain on 10 m class telescopes and in the near infrared for the first generation instruments of Extremely Large Telescopes (ELTs). Both applications lead to a large ratio between the telescope diameter, D, and the coherence length or Fried parameter, r0, that is D/r0. As the parameter that defines the required number of degrees of freedom of the AO system, D/r0 drives the requirement to reconstruct the incoming wavefront with ever-higher spatial resolution. In this context, super-resolution (SR) appears as a potential game changer. Indeed, SR promises to dramatically expand the range of spatial frequencies that can be reconstructed from a set of lower resolution measurements of the wavefront. Aims. As a technique that seeks to upscale the resolution of a set of measured signals, SR retrieves higher-frequency...

References (40)

  1. Agapito, G., Plantet, C., Busoni, L., et al. 2020, SPIE, 11448, 114482S
  2. Bara, S., Arines, J., & Pailos, E. 2013, Opt. Eng., 53, 061703
  3. Beutler, F. J. 1966, Siam Rev., 8, 328
  4. Busoni, L., Agapito, G., Plantet, C., et al. 2019, in 6th International Conference on Adaptive Optics for Extremely Large Telescopes, AO4ELT 2019, Québec, Canada
  5. Conan, R. 2014, in Fast Iterative Optimal Estimation of Turbulence Wavefronts with Recursive Block Toeplitz Covariance Matrix, 9148, 91480R
  6. Correia, C. M., & Teixeira, J. 2014, J. Opt. Soc. Am. A, 31, 2763
  7. Correia, C. M., Bond, C. Z., Sauvage, J.-F., et al. 2017, J. Opt. Soc. Am. A, 34, 1877
  8. Cranney, J., Guihot, A., De Dona, J., & Rigaut, F. 2021, in 2021 Australian New Zealand Control Conference (ANZCC), 24
  9. Deo, V., Gendron, É., Rousset, G., et al. 2018, A&A, 619, A56
  10. Ellerbroek, B. L. 2005, J. Opt. Soc. Am. A, 22, 310
  11. Ellerbroek, B. L., & Rigaut, F. 2001, J. Opt. Soc. Am. A, 18, 2539
  12. Fruchter, A. S., & Hook, R. N. 2002, PASP, 114, 144
  13. Fusco, T., Conan, J.-M., Rousset, G., Mugnier, L. M., & Michau, V. 2001, J. Opt. Soc. Am. A, 18, 2527
  14. Fusco, T., Agapito, G., Neichel, B., et al. 2022, J. Astron. Telescopes Instrum. Syst., 8, 021514
  15. Gerchberg, R. 1974, J. Mod. Opt., 21, 709
  16. Guyon, O. 2005, ApJ, 629, 592
  17. Hardy, J. W. 1998, Adaptive Optics for Astronomical Telescopes (New York: Oxford)
  18. Irani, M., & Peleg, S. 1990, in 10th IAPR International Conference on Pattern Recognition, Conference C: image, speech, and signal processing, and Con- ference D: computer architecture for vision in pattern recognition, ICPR 1990, Atlantic City, NJ, USA, 16-21 June, 1990, 2 (IEEE), 115
  19. Kadec, M. I. 1964, Sov. Math. Dokl., 5, 559
  20. Kohlenberg, A. 1953, J. Appl. Phys., 24, 1432
  21. Levinson, N. 1940, in American Mathematical Society Colloquium, 26
  22. Marvasti, F. 2001, Nonuniform Sampling: Theory and Practice, 1, 132
  23. Neichel, B., Fusco, T., & Conan, J.-M. 2009, J. Opt. Soc. Am. A, 26, 219
  24. Oberti, S., Le Louarn, M., Dialaiti, E., et al. 2017, MAORY design trade- off study:tomography dimensioning, AO4ELT5 Proceedings https://www. eso.org/~soberti/
  25. Oberti, S., Kolb, J., Madec, P.-Y., et al. 2018, in Adaptive Optics Systems VI, eds. L. M. Close, L. Schreiber, & D. Schmidt, 10703, International Society for Optics and Photonics (SPIE), 469
  26. Oberti, S., Vérinaud, C., Le Louarn, M., et al. 2019, in 6th International Con- ference on Adaptive Optics for Extremely Large Telescopes, AO4ELT 2019, Québec, Canada
  27. Oppenheim, A. V., & Willsky, A. S. 1997, Signals & Systems, 2nd edn. (Prentice-Hall, Inc.)
  28. Paley, R. E., & Wiener, N. 1934, Am. Math. Soc., 19, 147
  29. Park, S. C., Park, M. K., & Kang, M. G. 2003, IEEE Signal Process. Mag., 20, 21
  30. Rigaut, F., & Gendron, E. 1992, A&A, 261, 677
  31. Rigaut, F. J., Véran, J.-P., & Lai, O. 1998, SPIE Conf. Ser., 3353, 1038
  32. Rigaut, F., McDermid, R., Cresci, G., et al. 2020, SPIE Conf. Ser., 11447, 114471R
  33. Roddier, F. 1999, Adaptive Optics in Astronomy (New York: Cambridge University Press)
  34. Tsai, R. Y., & Huang, T. S. 1984, Adv. Comput. Vis. Image Process., 1, 317
  35. Vérinaud, C. 2004, Opt. Comm., 233, 27
  36. Wang, L., Andersen, D., & Ellerbroek, B. 2012, Appl. Opt., 51, 3692
  37. Wang, Z., Chen, J., & Hoi, S. C. H. 2021, IEEE Trans. Pattern Anal. Mach. Intell., 43, 3365
  38. Wiener, N. 1930, Acta Mathematica, 55, 117
  39. Wizinowich, P., Chin, J., Correia, C., et al. 2020, SPIE Conf. Ser., 11448, 114480E
  40. Woillez, J., Abad, J. A., Abuter, R., et al. 2019, A&A, 629, A41 A48, page 11 of 16 A&A 667, A48 (2022)