Academia.eduAcademia.edu

Outline

Suppression of dendrite growth by cross-flow in microfluidics

2021, Science Advances

Abstract

A cross-flow in microfluidics suppresses dendrite growth and electroconvection during electrodeposition.

References (47)

  1. E. V. Dydek, B. Zaltzman, I. Rubinstein, D. S. Deng, A. Mani, M. Z. Bazant, Overlimiting current in a microchannel. Phys. Rev. Lett. 107, 118301 (2011).
  2. J. N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355-7367 (1990).
  3. V. Fleury, J. N. Chazalviel, M. Rosso, Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits. Phys. Rev. E 48, 1279-1295 (1993).
  4. V. Fleury, J. Kaufman, B. Hibbert, Evolution of the space-charge layer during electrochemical deposition with convection. Phys. Rev. E 48, 3831-3840 (1993).
  5. I. Rubinstein, B. Zaltzman, Extended space charge in concentration polarization. Adv. Colloid and Interface Sci. 159, 117-129 (2010).
  6. C. P. Nielsen, H. Bruus, Morphological instability during steady electrodeposition at overlimiting currents. Phys. Rev. E 92, 052310 (2015).
  7. C. Chen, J. Jorne, The dynamics of morphological instability during electrodeposition. J. Electrochem. Soc. 138, 3305-3311 (1991).
  8. L. Oniciu, L. Mureşan, Some fundamental aspects of levelling and brightening in metal electrodeposition. J. Appl. Electrochem. 21, 565-574 (1991).
  9. L. Fan, H. L. Zhuang, L. Gao, Y. Lu, L. A. Archer, Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A 5, 3483-3492 (2017).
  10. F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J. G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450-4456 (2013).
  11. A. Basile, A. I. Bhatt, A. P. O'Mullane, Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 7, ncomms11794 (2016).
  12. M. D. Tikekar, L. A. Archer, D. L. Koch, Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016).
  13. J. Park, J. Jeong, Y. Lee, M. Oh, M. Ryou, Y. M. Lee, Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries. Adv. Mater. Interfaces 3, 1600140 (2016).
  14. S. M. Davidson, M. Wessling, A. Mani, On the dynamical regimes of pattern-accelerated electroconvection. Sci. Rep. 6, 22505 (2016).
  15. N. Li, W. Wei, K. Xie, J. Tan, L. Zhang, X. Luo, K. Yuan, Q. Song, H. Li, C. Shen, E. M. Ryan, L. Liu, C. Shen, Suppressing dendritic lithium formation using porous media in lithium metal-based batteries. Nano Lett. 18, 2067-2073 (2018).
  16. E. I. Belova, G. Y. Lopatkova, N. D. Pismenskaya, V. V. Nikonenko, C. Larchet, G. Pourcelly, Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 110, 13458-13469 (2006).
  17. J.-H. Han, M. Wang, P. Bai, F. R. Brushett, M. Z. Bazant, Dendrite suppression by shock electrodeposition in charged porous media. Sci. Rep. 6, 28054 (2016).
  18. Y. Ito, M. Nyce, R. Plivelich, M. Klein, D. Steingart, S. Banerjee, Zinc morphology in zinc-nickel flow assisted batteries and impact on performance. J. Power Sources 196, 2340-2345 (2011).
  19. G. González, M. Rosso, E. Chassaing, Transition between two dendritic growth mechanisms in electrodeposition. Phys. Rev. E 78, 011601 (2008).
  20. M. Eshraghi, M. Hashemi, B. Jelinek, S. D. Felicelli, Three-dimensional lattice Boltzmann modeling of dendritic solidification under forced and natural convection. Metals 7, 474 (2017).
  21. J. Madison, J. E. Spowart, D. J. Rowenhorst, L. K. Aagesen, K. Thornton, T. M. Pollock, Fluid flow and defect formation in the three-dimensional dendritic structure of nickel-based single crystals. Metall. Mater. Trans. A 43, 369-380 (2012).
  22. M. S. Bhat, D. R. Poirier, J. C. Heinrich, Permeability for cross flow through columnar- dendritic alloys. Metall. Mater. Trans. B 26, 1049-1056 (1995).
  23. M. J. Willey, U. Emekli, A. C. West, Uniformity effects when electrodepositing Cu onto resistive substrates in the presence of organic additives. J. Electrochem. Soc. 155, D302 (2008).
  24. A. Wlasenko, F. Soltani, D. Zakopcan, D. Sinton, G. M. Steeves, Diffusion-limited and advection-driven electrodeposition in a microfluidic channel. Phys. Rev. E 81, 021601 (2010).
  25. O. Crowther, A. C. West, Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806 (2008).
  26. J. W. Gallaway, D. Desai, A. Gaikwad, C. Corredor, S. Banerjee, D. Steingart, A lateral microfluidic cell for imaging electrodeposited zinc near the shorting condition. J. Electrochem. Soc. 157, A1279 (2010).
  27. J. Zheng, J. Yin, D. Zhang, G. Li, D. C. Bock, T. Tang, Q. Zhao, X. Liu, A. Warren, Y. Deng, S. Jin, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, C. D. Rahn, L. A. Archer, Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci. Adv. 6, eabb1122 (2020).
  28. J. M. Costa, M. S. Hori, A. F. de Almeida Neto, Effects of the forced convection and current density on the electrodeposition of Zn-Fe-Mo alloys. Chem. Phys. 527, 110502 (2019).
  29. J. M. Huth, H. L. Swinney, W. D. McCormick, A. Kuhn, F. Argoul, Role of convection in thin-layer electrodeposition. Phys. Rev. E 51, 3444-3458 (1995).
  30. V. Fleury, M. Rosso, J. N. Chazalviel, B. Sapoval, Experimental aspects of dense morphology in copper electrodeposition. Phys. Rev. A 44, 6693-6705 (1991).
  31. J. Xiao, How lithium dendrites form in liquid batteries. Science 366, 426-427 (2019).
  32. C. Brissot, M. Rossoa, J. N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81-82, 925-929 (1999).
  33. L. G. Sundström, F. H. Bark, On morphological instability during electrodeposition with a stagnant binary electrolyte. Electrochim. Acta 40, 599-614 (1995).
  34. M. D. Tikekar, L. A. Archer, D. L. Koch, Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847 (2014).
  35. M. N. Parekh, C. D. Rahn, L. A. Archer, Controlling dendrite growth in lithium metal batteries through forced advection. J. Power Sources 452, 227760 (2020).
  36. A. Huang, H. Liu, O. Manor, P. Liu, J. Friend, Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32, 1907516 (2020).
  37. B. Zaltzman, I. Rubinstein, Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 579, 173-226 (2007).
  38. J. Newman, Engineering design of electrochemical systems. Ind. Eng. Chem. 60, 12-27 (1968).
  39. G. Li, L. A. Archer, D. L. Koch, Electroconvection in a viscoelastic electrolyte. Phys. Rev. Lett. 122, 124501 (2019).
  40. C. L. Druzgalski, M. B. Andersen, A. Mani, Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids 25, 110804 (2013).
  41. E. A. Demekhin, N. V. Nikitin, V. S. Shelistov, Direct numerical simulation of electrokinetic instability and transition to chaotic motion. Phys. Fluids 25, 122001 (2013).
  42. R. Kwak, V. S. Pham, K. M. Lim, J. Han, Shear flow of an electrically charged fluid by ion concentration polarization: Scaling laws for electroconvective vortices. Phys. Rev. Lett. 110, 114501 (2013).
  43. F. Barbir, PEM Fuel Cells: Theory and Practice (Academic Press, 2012).
  44. A. Castellanos, N. Agrait, Unipolar injection induced instabilities in plane parallel flows. IEEE Trans. Ind. Appl. 28, 513-519 (1992).
  45. M. B. Andersen, K. M. Wang, J. Schiffbauer, A. Mani, Confinement effects on electroconvective instability. Electrophoresis 38, 702-711 (2017).
  46. I. Cho, G. Y. Sung, S. J. Kim, Overlimiting current through ion concentration polarization layer: Hydrodynamic convection effects. Nanoscale 6, 4620-4626 (2014).
  47. A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications (John Wiley & Sons, 2001).