Suppression of dendrite growth by cross-flow in microfluidics
2021, Science Advances
Abstract
A cross-flow in microfluidics suppresses dendrite growth and electroconvection during electrodeposition.
References (47)
- E. V. Dydek, B. Zaltzman, I. Rubinstein, D. S. Deng, A. Mani, M. Z. Bazant, Overlimiting current in a microchannel. Phys. Rev. Lett. 107, 118301 (2011).
- J. N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355-7367 (1990).
- V. Fleury, J. N. Chazalviel, M. Rosso, Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits. Phys. Rev. E 48, 1279-1295 (1993).
- V. Fleury, J. Kaufman, B. Hibbert, Evolution of the space-charge layer during electrochemical deposition with convection. Phys. Rev. E 48, 3831-3840 (1993).
- I. Rubinstein, B. Zaltzman, Extended space charge in concentration polarization. Adv. Colloid and Interface Sci. 159, 117-129 (2010).
- C. P. Nielsen, H. Bruus, Morphological instability during steady electrodeposition at overlimiting currents. Phys. Rev. E 92, 052310 (2015).
- C. Chen, J. Jorne, The dynamics of morphological instability during electrodeposition. J. Electrochem. Soc. 138, 3305-3311 (1991).
- L. Oniciu, L. Mureşan, Some fundamental aspects of levelling and brightening in metal electrodeposition. J. Appl. Electrochem. 21, 565-574 (1991).
- L. Fan, H. L. Zhuang, L. Gao, Y. Lu, L. A. Archer, Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A 5, 3483-3492 (2017).
- F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J. G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450-4456 (2013).
- A. Basile, A. I. Bhatt, A. P. O'Mullane, Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 7, ncomms11794 (2016).
- M. D. Tikekar, L. A. Archer, D. L. Koch, Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016).
- J. Park, J. Jeong, Y. Lee, M. Oh, M. Ryou, Y. M. Lee, Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries. Adv. Mater. Interfaces 3, 1600140 (2016).
- S. M. Davidson, M. Wessling, A. Mani, On the dynamical regimes of pattern-accelerated electroconvection. Sci. Rep. 6, 22505 (2016).
- N. Li, W. Wei, K. Xie, J. Tan, L. Zhang, X. Luo, K. Yuan, Q. Song, H. Li, C. Shen, E. M. Ryan, L. Liu, C. Shen, Suppressing dendritic lithium formation using porous media in lithium metal-based batteries. Nano Lett. 18, 2067-2073 (2018).
- E. I. Belova, G. Y. Lopatkova, N. D. Pismenskaya, V. V. Nikonenko, C. Larchet, G. Pourcelly, Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 110, 13458-13469 (2006).
- J.-H. Han, M. Wang, P. Bai, F. R. Brushett, M. Z. Bazant, Dendrite suppression by shock electrodeposition in charged porous media. Sci. Rep. 6, 28054 (2016).
- Y. Ito, M. Nyce, R. Plivelich, M. Klein, D. Steingart, S. Banerjee, Zinc morphology in zinc-nickel flow assisted batteries and impact on performance. J. Power Sources 196, 2340-2345 (2011).
- G. González, M. Rosso, E. Chassaing, Transition between two dendritic growth mechanisms in electrodeposition. Phys. Rev. E 78, 011601 (2008).
- M. Eshraghi, M. Hashemi, B. Jelinek, S. D. Felicelli, Three-dimensional lattice Boltzmann modeling of dendritic solidification under forced and natural convection. Metals 7, 474 (2017).
- J. Madison, J. E. Spowart, D. J. Rowenhorst, L. K. Aagesen, K. Thornton, T. M. Pollock, Fluid flow and defect formation in the three-dimensional dendritic structure of nickel-based single crystals. Metall. Mater. Trans. A 43, 369-380 (2012).
- M. S. Bhat, D. R. Poirier, J. C. Heinrich, Permeability for cross flow through columnar- dendritic alloys. Metall. Mater. Trans. B 26, 1049-1056 (1995).
- M. J. Willey, U. Emekli, A. C. West, Uniformity effects when electrodepositing Cu onto resistive substrates in the presence of organic additives. J. Electrochem. Soc. 155, D302 (2008).
- A. Wlasenko, F. Soltani, D. Zakopcan, D. Sinton, G. M. Steeves, Diffusion-limited and advection-driven electrodeposition in a microfluidic channel. Phys. Rev. E 81, 021601 (2010).
- O. Crowther, A. C. West, Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806 (2008).
- J. W. Gallaway, D. Desai, A. Gaikwad, C. Corredor, S. Banerjee, D. Steingart, A lateral microfluidic cell for imaging electrodeposited zinc near the shorting condition. J. Electrochem. Soc. 157, A1279 (2010).
- J. Zheng, J. Yin, D. Zhang, G. Li, D. C. Bock, T. Tang, Q. Zhao, X. Liu, A. Warren, Y. Deng, S. Jin, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, C. D. Rahn, L. A. Archer, Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci. Adv. 6, eabb1122 (2020).
- J. M. Costa, M. S. Hori, A. F. de Almeida Neto, Effects of the forced convection and current density on the electrodeposition of Zn-Fe-Mo alloys. Chem. Phys. 527, 110502 (2019).
- J. M. Huth, H. L. Swinney, W. D. McCormick, A. Kuhn, F. Argoul, Role of convection in thin-layer electrodeposition. Phys. Rev. E 51, 3444-3458 (1995).
- V. Fleury, M. Rosso, J. N. Chazalviel, B. Sapoval, Experimental aspects of dense morphology in copper electrodeposition. Phys. Rev. A 44, 6693-6705 (1991).
- J. Xiao, How lithium dendrites form in liquid batteries. Science 366, 426-427 (2019).
- C. Brissot, M. Rossoa, J. N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81-82, 925-929 (1999).
- L. G. Sundström, F. H. Bark, On morphological instability during electrodeposition with a stagnant binary electrolyte. Electrochim. Acta 40, 599-614 (1995).
- M. D. Tikekar, L. A. Archer, D. L. Koch, Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847 (2014).
- M. N. Parekh, C. D. Rahn, L. A. Archer, Controlling dendrite growth in lithium metal batteries through forced advection. J. Power Sources 452, 227760 (2020).
- A. Huang, H. Liu, O. Manor, P. Liu, J. Friend, Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32, 1907516 (2020).
- B. Zaltzman, I. Rubinstein, Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 579, 173-226 (2007).
- J. Newman, Engineering design of electrochemical systems. Ind. Eng. Chem. 60, 12-27 (1968).
- G. Li, L. A. Archer, D. L. Koch, Electroconvection in a viscoelastic electrolyte. Phys. Rev. Lett. 122, 124501 (2019).
- C. L. Druzgalski, M. B. Andersen, A. Mani, Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids 25, 110804 (2013).
- E. A. Demekhin, N. V. Nikitin, V. S. Shelistov, Direct numerical simulation of electrokinetic instability and transition to chaotic motion. Phys. Fluids 25, 122001 (2013).
- R. Kwak, V. S. Pham, K. M. Lim, J. Han, Shear flow of an electrically charged fluid by ion concentration polarization: Scaling laws for electroconvective vortices. Phys. Rev. Lett. 110, 114501 (2013).
- F. Barbir, PEM Fuel Cells: Theory and Practice (Academic Press, 2012).
- A. Castellanos, N. Agrait, Unipolar injection induced instabilities in plane parallel flows. IEEE Trans. Ind. Appl. 28, 513-519 (1992).
- M. B. Andersen, K. M. Wang, J. Schiffbauer, A. Mani, Confinement effects on electroconvective instability. Electrophoresis 38, 702-711 (2017).
- I. Cho, G. Y. Sung, S. J. Kim, Overlimiting current through ion concentration polarization layer: Hydrodynamic convection effects. Nanoscale 6, 4620-4626 (2014).
- A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications (John Wiley & Sons, 2001).