Slow Manifold of a Neuronal Bursting Model
Understanding Complex Systems
https://doi.org/10.1007/3-540-34824-7_6Abstract
Comparing neuronal bursting models (NBM) with slow-fast autonomous dynamical systems (S-FADS), it appears that the specific features of a (NBM) do not allow a determination of the analytical slow manifold equation with the singular approximation method. So, a new approach based on Differential Geometry, generally used for (S-FADS), is proposed. Adapted to (NBM), this new method provides three equivalent manners of determination of the analytical slow manifold equation. Application is made for the three-variables model of neuronal bursting elaborated by Hindmarsh and Rose which is one of the most used mathematical representation of the widespread phenomenon of oscillatory burst discharges that occur in real neuronal cells.
References (14)
- Andronov AA, Khaikin SE, & Vitt AA (1966) Theory of oscillators, Pergamon Press, Oxford
- Coddington EA & Levinson N, (1955) Theory of Ordinary Differential Equations, Mac Graw Hill, New York
- Fitzhugh R (1961) Biophys. J 1:445-466
- Ginoux JM & Rossetto B (2006) Int. J. Bifurcations and Chaos, (in print)
- Hindmarsh JL & Rose RM (1982) Nature 296:162-164
- Hindmarsh JL & Rose RM (1984) Philos. Trans. Roy. Soc. London Ser. B 221:87-102
- Hodgkin AL & Huxley AF (1952) J. Physiol. (Lond.) 116:473-96
- Hodgkin AL & Huxley AF (1952) J. Physiol. (Lond.) 116: 449-72
- Hodgkin AL & Huxley AF (1952) J. Physiol. (Lond.) 116: 497-506
- Hodgkin AL & Huxley AF (1952) J. Physiol. (Lond.) 117: 500-44
- Hodgkin AL, Huxley AF & Katz B (1952) B. Katz J. Physiol. (Lond.) 116: 424-48
- Nagumo JS, Arimoto S & Yoshizawa S (1962) Proc. Inst. Radio Engi- neers 50:2061-2070
- Rose RM & Hindmarsh JL (1985) Proc. R. Soc. Ser. B 225:161-193
- Rossetto B, Lenzini T, Suchey G & Ramdani S (1998) Int. J. Bifurcation and Chaos, vol. 8 (11):2135-2145