Academia.eduAcademia.edu

Outline

Determination of Thermal Conductivities in Multilayer Materials

WSEAS TRANSACTIONS ON HEAT AND MASS TRANSFER

https://doi.org/10.37394/232012.2022.17.20

Abstract

The objective of this work is the determination of the materials that make up a three-layer body, based on the simultaneous estimation of the thermal conductivity of the material of each layer. The body is exposed to a one-dimensional stationary, non-invasive, heat transfer process. It is assumed that the union of each pair of consecutive materials does not present thermal resistance. The parameters to be determined are estimated using three temperature measurements, one at each interface and another at the right edge of the body. The estimation is calculated analytically and a bound is given for the estimation error. In addition, an elasticity analysis is carried out to analyze the local dependence of each estimated parameter with respect to the data. A numerical example is included to illustrate and discuss the method proposed here.

References (19)

  1. Y.A. Cengel, Heat and mass transfer: a practical approach, McGraw-Hill, New York., 2007.
  2. S. Chantasiriwan and M.N. Ozisik, Steady- state determination of temperature-dependent thermal conductivity, International Com- munications in Heat and Mass Trans- fer. 29(6), 2002, pp. 811-819. doi: 10.1016/S0735-1933(02)00371-8
  3. G.P. Flach and M.N. Ozisik, Inverse heat con- duction problem of simultaneously estimat- ing spatially varying thermal conductivity and heat capacity per unit volume, Numerical Heat Transfer, Part A. 16(2), 1989, pp. 249-266. doi:10.1080/10407788908944716
  4. C.H. Huang, J.Y. Yan and H.T. Chen, Function estimation in predicting temperature-dependent thermal conductivity without internal measure- ments, Journal of Thermophysics and Heat Transfer. 9(4), 1995, pp. doi:10. 2514/3.722
  5. C.H. Huang and S.C. Chin, A two-dimensional inverse problem in imaging the termal con- ductivity of a non-homogeneous In- ternational Journal of Heat and Mass Trans- fer. 43(22), 2000, pp. 4061-4071. doi:10. 1016/S0017-9310(00)00044-2
  6. T. Jurkowski, Y. Jarny and D. Delaunay, Es- timation of thermal conductivity of thermo- plastics under moulding conditions: an ap- paratus and an inverse algorithm, Interna- tional Journal of Heat and Mass Trans- fer. 40(17), 1997, pp. 4169-4181. doi:10. 1016/S0017-9310(97)00027-6
  7. T.T. Lam and W.K. Yeung, Inverse determina- tion of thermal conductivity for one-dimensional problems, Journal of Thermophysics and Heat Transfer. 9(2), 1995, pp. 335-344. doi:10. 2514/3.665
  8. L. Lesnic, L. Elliot, D.B. Inghan, B. Clen- nell and R.J. Knipe, The identification of the piecewise homogeneous thermal conductivity of conductors subjected to a heat flow test, In- ternational Journal of Heat and Mass Trans- fer. 42(1), 1999, pp. 143-152. doi:10.1016/ S0017-9310(98)00132-X
  9. T.J. Martin and G.S. Dulikravich, Inverse deter- mination of temperature-dependent thermal con- ductivity using steady surface data on arbitrary objects, Journal of Heat Transfer. 122(3), 2000, pp. 450-459. doi:10.1115/1.1287726
  10. N.N. Salva and D.A. Tarzia, A sensitivity analysis for the determination of unknown coefficients through a phase-change pro- cess with temperature-dependent thermal conductivity, International Communica- tions in Heat and Mass Transfer. 38(4), 2011, pp. 418-424. doi:10.1016/j. icheatmasstransfer.2010.12.017
  11. N.N. Salva and D.A. Tarzia, Simultaneous de- termination of unknown coefficients through a phase-change process with temperature- dependent thermal conductivity, JP Journal of Heat and Mass Transfer. 5(1), 2011, pp. 11-39.
  12. D.A. Tarzia, Simultaneous determination of two unknown thermal coefficients through an in- verse one-phase Lamé-Clapeyron (Stefan) prob- lem with an overspecified condition on the fixed face, International Journal of Heat and Mass Transfer. 26(8), 1983, pp. 1151-1157. 10. 1016/S0017-9310(83)80169-0
  13. D.A. Tarzia, The determination of unknown thermal coefficients through phase change pro- cess with temperature-dependent thermal con- ductivity, International Communications in Heat and Mass Transfer. 25(1), 1998, pp. 139-147. 10.1016/S0735-1933(97)00145-0
  14. P. Trevola, A method to determine the thermal conductivity from measured temperature pro- files, International Journal of Heat and Mass Transfer. 32(8), 1989, pp. 1425-1430. doi: 10.1016/0017-9310(89)90066-5
  15. G.F. Umbricht, D. Rubio, R. Echarri, C. El Hasi, A technique to estimate the transient coefficient of heat transfer by convection, Latin American Applied Research. 50(3), 2020, pp. 229-234. doi:10.52292/j.laar.2020.179
  16. G.F. Umbricht, D. Rubio and D.A. Tarzia. Es- timation of a thermal conductivity in a station- ary heat transfer problem with a solid-solid in- terface, International Journal of Heat and Tech- nology. 39(2), 2021, pp. 337-344. doi:10. 18280/ijht.390202
  17. G.F. Umbricht, D.A. Tarzia and D. Rubio, De- termination of two homogeneous materials in a bar with solid-solid interface, Mathemati- cal Modelling of Engineering Problems. 9(3), 2022, pp. 568-576. doi:10.18280/mmep. 090302
  18. C.Y. Yang, A linear inverse model for the temperature-dependent thermal conductivity de- termination in one-dimensional problems, Ap- plied Mathematical Modelling. 22(1), 1998, pp. 1-9. doi:10.1016/S0307-904X(97) 00101-7
  19. C.Y. Yang, Estimation of the temperature depen- dent thermal conductivity in inverse heat con- duction problem, Applied Mathematical Mod- elling. 23(6), 1999, pp. 469-418. doi:10. 1016/S0307-904X(98)10093-8