Academia.eduAcademia.edu

Outline

A new metric for multimedia retrieval in structured documents

https://doi.org/10.5220/0004443302400247

Abstract

Most documents available in Textual Database or in Internet are strongly structured. This is the case for example for scientific papers or written documents using markup languages (HTML, XML). This information provided by the structure can be exploited by systems of information retrieval to define the granularity of elements to return in response to a request made by a user or to improve the relevance of these results. In this article, We are interested in recovering multimedia elements. Like this, we propose a new metric for multimedia retrieval in XML documents which is based on computing a geometric distance between XML nodes while taking into account kinship ties and proximities between them. This measure will introduce a new source of evidence for multimedia retrieval in structural documents which aims at finding relevant multimedia element that focus on the user information need. Experiments have been undertaken to show the effectiveness of our method.)

References (14)

  1. Aouadi, H., Khemakhem, M. T., and Jemaa, M. B. (2012). Combination of document structure and links for multimedia object retrieval. J. Information Science, 38(5):442-458.
  2. Awadi, H. and Torjmen, M. (2010). Exploitation des liens pour la recherche d'images dans des documents xml. In Proceedings of the 7th French Informa- tion Retrieval Conference CORIA 2010 -COnférence en Recherche d'Infomations et Applications, Sousse, Tunisia.
  3. Bray, T., Paoli, J., Sperberg-Mcqueen, C. M., Eve, and Yergeau, F. (2003). Extensible Markup Language (XML) 1.0. W3C Recommendation. W3C, fourth edi- tion.
  4. Fuhr, N., Kamps, J., Lalmas, M., Malik, S., and Trotman, A. (2007). Overview of the inex 2007 ad hoc track. In INEX, pages 1-23.
  5. Hirst, G. and St-Onge, D. (1997). Lexical chains as repre- sentations of context for the detection and correction of malapropisms.
  6. Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E. G. M., and Milios, E. (2006). Information retrieval by semantic similarity. In Intern. Journal on Semantic Web and Information Systems (IJSWIS).Special Issue of Multimedia Semantics, pages 55-73.
  7. Kong, Z. and Lalmas, M. (2005). Xml multimedia retrieval. In SPIRE, pages 218-223.
  8. Porter, M. (1980). An algorithm for suffix stripping. Pro- gram, 14(3):130-137.
  9. Rada, R., Mili, H., Bicknell, E., and Blettner, M. (1989). ICEIS2013-15thInternationalConferenceonEnterpriseInformationSystems 246 Development and application of a metric on semantic nets. 19:17-30.
  10. Schlieder, T. and Holger, M. (2002). Querying and ranking xml documents. Journal of the American Society for Information Science and Technology, 53:489-503.
  11. Torjmen, M., Pinel-Sauvagnat, K., and Boughanem, M. (2010). Using textual and structural context for searching multimedia elements. IJBIDM, 5(4):323- 352.
  12. Tsikrika, T., Serdyukov, P., Rode, H., Westerveld, T., Aly, R., Hiemstra, D., and de, A. P. V. (2008). Structured document retrieval, multimedia retrieval, and entity ranking using pf/tijah. In 6th Initiative on the Eval- uation of XML Retrieval, INEX 2007, volume 4862 of Lecture Notes in Computer Science, pages 306-320, London. Springer Verlag.
  13. Westerveld, T., Rode, H., van, R. O., Hiemstra, D., Ramirez, G., Mihajlovic, V., and de, A. V. (2007). Evaluating structured information retrieval and multi- media retrieval using pf/tijah. In Fuhr, N., Lalmas, M., and A., editors, Comparative Evaluation of XML Information Retrieval Systems, volume 4518 of Lecture Notes in Computer Science, pages 104-114, Berlin, Germany. Springer Verlag.
  14. Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association for Computational Linguistics, ACL '94, pages 133-138, Stroudsburg, PA, USA. Associ- ation for Computational Linguistics.