Academia.eduAcademia.edu

Outline

Waverider Configuration Design With Variable Shock Angle

2019, IEEE Access

https://doi.org/10.1109/ACCESS.2019.2907806

Abstract

A novel waverider design methodology is proposed with a variable shock angle based on the osculating cones' theory. The expected shape with special requirements can be generated by arranging the distribution of shock angle using the new method. Contrast investigation is conducted on three waveriders, which are designed with constant, decreasing and increasing shock angle distribution starting from symmetry plane at the average shock angle of 12 •. The feasibility of the proposed approach is validated by the computational fluid dynamics (CFD) simulation. The results show that the distribution of shock angle has a significant influence on the lift-to-drag ratio and volumetric efficiency. Waverider with decreasing shock angle owns the greater volume and volumetric efficiency but with weak aerodynamic performance. The waverider with increasing shock angle has a higher lift-to-drag ratio and enhanced the static stability but with lower volumetric efficiency. The performance of waveriders with variable shock angle under off-design and blunted conditions is also investigated, which reveals a great overall aerodynamic performance and good robustness. INDEX TERMS Hypersonic waverider, variable shock angle, lift-to-drag ratio, off-design condition, bluntness.

References (32)

  1. F. Wang, H. Ding, and M. Lei, ''Aerodynamic characteristics research on wide-speed range waverider configuration,'' Sci. China E, Technol. Sci., vol. 52, no. 10, pp. 2903-2910, 2009.
  2. W. Wang, Z. Hou, S. Shan, and L. Chen, ''Optimal periodic control of hypersonic cruise vehicle: Trajectory features,'' IEEE Access, vol. 7, pp. 3406-3421, 2019.
  3. V. Borsch, ''Flow on the wind side of wedge-derived waveriders revisited, or do on-design strong planar shock waves really exist?'' in Proc. 44th AIAA Aerosp. Sci. Meeting Exhib., 2006, p. 122.
  4. N. Takashima and M. J. Lewis, ''Optimization of waverider-based hyper- sonic cruise vehicles with off-design considerations,'' J. Aircraft, vol. 36, no. 1, pp. 235-245, 1999.
  5. K. Kontogiannis, A. Sóbester, and N. Taylor, ''Efficient parameterization of waverider geometries,'' J. Aircraft, vol. 54, no. 3, pp. 890-901, 2016.
  6. T. R. F. Nonweiler, ''Aerodynamic problems of manned space vehicles,'' Aeronaut. J., vol. 63, no. 585, pp. 521-528, 1959.
  7. M. P. F. Rasmussen, ''Waverider configurations derived from inclined cir- cular and elliptic cones,'' J. Spacecraft Rockets, vol. 17, no. 6, pp. 537-545, 1980.
  8. M. Rasmussen, M. Jischke, and D. Daniel, ''Experimental forces and moments on Cone-derived waveriders for m ∞ =3 to 5,'' J. Spacecraft Rockets, vol. 19, no. 6, pp. 592-598, 1982.
  9. H. Sobieczky, F. Dougherty, and K. Jones, ''Hypersonic waverider design from given shock waves,'' in Proc. 1st Int. Hypersonic Waverider Symp. College Park, MD, USA: Univ. Maryland College Park, 1990, pp. 17-19.
  10. X. He, J. Le, and S. Qin, ''Design and analysis osculating general curved cone waverider,'' Aircr. Eng. Aerosp. Technol., vol. 89, no. 6, pp. 797-803, 2017.
  11. F. Ding, J. Liu, C.-B. Shen, and W. Huang, ''Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von karman ogive,'' Aerosp. Sci. Technol., vol. 42, pp. 297-308, Apr. 2015.
  12. F. Ding, C.-B. Shen, J. Liu, and W. Huang, ''Comparison between novel waverider generated from flow past a pointed von karman ogive and con- ventional cone-derived waverider,'' Proc. Inst. Mech. Eng., G, J. Aerosp. Eng., vol. 229, no. 14, pp. 2620-2633, 2015.
  13. Z. Liu, J. Liu, F. Ding, and Z. Xia, ''Novel methodology for wide-ranged multistage morphing waverider based on conical theory,'' Acta Astronaut., vol. 140, pp. 362-369, Nov. 2017.
  14. K. Cui, G.-L. Li, Y. Xiao, and Y.-Z. Xu, ''High-pressure capturing wing configurations,'' AIAA J., vol. 55, no. 6, pp. 1909-1919, 2017.
  15. P. Rodi, ''Vortex lift waverider configurations,'' in Proc. 50th AIAA Aerosp. Sci. Meeting Including New Horizons Forum Aerosp. Exposit., 2012, p. 1238.
  16. J. Liu, F. Ding, W. Huang, and L. Jin, ''Novel approach for designing a hypersonic gliding-cruising dual waverider vehicle,'' Acta Astronaut., vol. 102, pp. 81-88, Sep. 2014.
  17. S. B. Li, W. Huang, Z. G. Wang, and J. Lei, ''Design and aerodynamic investigation of a parallel vehicle on a wide-speed range,'' Sci. China Inf. Sci., vol. 57, no. 12, pp. 1-10, 2014.
  18. S. B. Li, Z. G. Wang, W. Huang, J. Lei, and S. R. Xu, ''Design and investigation on variable mach number waverider for a wide-speed range,'' Aerosp. Sci. Technol., vol. 76, pp. 291-302, May 2018.
  19. Z.-T. Zhao, W. Huang, S.-B. Li, T.-T. Zhang, and L. Yan, ''Variable Mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory,'' Acta Astronaut., vol. 147, pp. 163-174, Jun. 2018.
  20. J. Wang, C. Liu, P. Bai, J. Cai, and Y. Tian, ''Design methodology of the waverider with a controllable planar shape,'' Acta Astronaut., vol. 151, pp. 504-510, Oct. 2018.
  21. L. L. Chen, X. L. Deng, Z. Guo, Z. X. Hou, and W. K. Wang, ''A novel approach for design and analysis of volume-improved osculating-cone waveriders,'' Acta Astronaut., to be published. doi: 10.1016/j.actaastro.2019.02.033.
  22. B. Mangin, R. Benay, B. Chanet, and A. Chpoun, ''Optimization of vis- cous waveriders derived from axisymmetric power-law blunt body flows,'' J. Spacecraft Rockets, vol. 43, no. 5, pp. 990-998, 2006.
  23. Y. Wang, S. Yang, D. Zhang, and X. Deng, ''Design of waverider configu- ration with high lift-drag ratio,'' J. Aircr., vol. 44, no. 1, pp. 144-148, 2007.
  24. X. He and M. L. Rasmussen, ''Computational analysis of off-design waveriders,'' J. Aircr., vol. 31, no. 2, pp. 345-353, 1994.
  25. G. O. Stecklein, ''A comparative study of numerical versus analytical waverider solutions,'' M.S. thesis, Air Force Inst. Technol. Air Univ., Wright-Patterson AFB, OH, USA, Dec. 1991.
  26. G. I. Taylor and J. W. Maccoll, ''The air pressure on a cone moving at high speeds-II,'' Proc. Roy. Soc. London A, Math., Phys. Eng. Sci., vol. 139, no. 838, pp. 278-297, 1933.
  27. ANSYS Fluent Theory Guide, ANSYS, Canonsburg, PA, USA, 2015.
  28. F. Ding, J. Liu, C.-B. Shen, and W. Huang, ''Novel inlet-airframe inte- gration methodology for hypersonic waverider vehicles,'' Acta Astronaut., vol. 111, pp. 178-197, Jun. 2015.
  29. N. Takashima and M. J. Lewis, ''Navier-Stokes computation of a viscous optimized waverider,'' J. Spacecraft Rockets, vol. 31, no. 3, pp. 383-391, 1994.
  30. P. E. Rodi, ''On using upper surface shaping to improve waverider perfor- mance,'' in Proc. AIAA SciTech Forum AIAA Aerosp. Sci. Meeting, 2018, p. 554.
  31. X.-Q. Chen, Z.-X. Hou, J.-X. Liu, and X.-Z. Gao, ''Bluntness impact on performance of waverider,'' Comput. Fluids, vol. 48, pp. 30-43, Sep. 2011.
  32. W. Santos, ''Bluntness effects on lift-to-drag ratio of leading edges for hypersonic waverider configurations,'' in Proc. 18th AIAA/3AF Int. Space Planes Hypersonic Syst. Technol. Conf., 2012, p. 5802.