Academia.eduAcademia.edu

Outline

New Approach for Managing Sustainability in Projects

Sustainability

https://doi.org/10.3390/SU13137037

Abstract

Despite the work done to date, project sustainability management (PSM) is still at an embryonic stage. The existing literature considers sustainability as a transversal aspect to be incorporated into the traditional management functions (scope, time, cost, quality, etc.). This article proposes sustainability as a key aspect of project management, with three essential components: principles, processes and competences. Regarding principles, the principle of sustainable development should be added to those generally suggested. As for processes, seven are proposed for (1) planning sustainability management; (2) establishing a sustainability breakdown structure; (3) defining the sustainability objective; (4) identifying project alternatives to achieve it; (5) planning and (6) implementing the sustainability strategy; and (7) monitoring and control. The main interrelationships between these processes and those of project initiation, planning, implementation, control, and closure are also ...

References (93)

  1. Brundtland, G.H.; Khalid, M.; Agnelli, S.; Al-Athel, S.; Chidzero, B.; Fadika, L.; Hauff, V.; Lang, I.; Shijun, M. Our Common Future; Oxford University Press: Oxford, UK, 1987.
  2. United Nations. Rio Declaration on Environment and Development; United Nations (UN): Rio of Janeiro, Brazil, 1992.
  3. Sabini, L.; Muzio, D.; Alderman, N. 25 years of 'sustainable projects'. What we know and what the literature says. Int. J. Proj. Manag. 2019, 37, 820-838. [CrossRef]
  4. Dobrovolskien ė, N.; Tamoši ūnien ė, R. An index to measure sustainability of a business project in the construction industry: Lithuanian case. Sustainability 2016, 8, 14. [CrossRef]
  5. Armenia, S.; Dangelico, R.M.; Nonino, F.; Pompei, A. Sustainable Project Management: A Conceptualization-Oriented Review and a Framework Proposal for Future Studies. Sustainability 2019, 11, 2664. [CrossRef]
  6. Chofreh, A.G.; Goni, F.A.; Malik, M.N.; Khan, H.H.; Klemeš, J.J. The imperative and research directions of sustainable project management. J. Clean. Prod. 2019, 238, 117810. [CrossRef]
  7. Azapagic, A. Systems Approach to Corporate Sustainability. Process Saf. Environ. Prot. 2003, 81, 303-316. [CrossRef]
  8. Carvalho, M.M.; Rabechini, R. Can project sustainability management impact project success? An empirical study applying a contingent approach. Int. J. Proj. Manag. 2017, 35, 1120-1132. [CrossRef]
  9. Marcelino-Sádaba, S.; González-Jaen, L.F.; Pérez-Ezcurdia, A. Using project management as a way to sustainability. from a comprehensive review to a framework definition. J. Clean. Prod. 2015, 99, 1-16. [CrossRef]
  10. Corder, G.D.; McLellan, B.C.; Bangerter, P.J.; van Beers, D.; Green, S.R. Engineering-in sustainability through the application of SUSOP ® . Chem. Eng. Res. Des. 2012, 90, 98-109. [CrossRef]
  11. Fellows, R.; Liu, A. Impact of participants' values on construction sustainability. Proc. Inst. Civ. Eng.-Eng. Sustain. 2008, 161, 219-227. [CrossRef]
  12. Brent, A.; Labuschagne, C. Social indicators for sustainable project and technology life cycle management in the process industry (13 pp+ 4). Int. J. Life Cycle Assess. 2006, 11, 3-15. [CrossRef]
  13. Korkmaz, S.; Riley, D.; Horman, M. Piloting Evaluation Metrics for Sustainable High-Performance Building Project Delivery. J. Constr. Eng. Manag. 2010, 136, 877-885. [CrossRef]
  14. Mieg, H.A. Sustainability and innovation in urban development: Concept and case. Sustain. Dev. 2012, 20, 251-263. [CrossRef]
  15. Vifell, Å.C.; Soneryd, L. Organizing matters: How "the social dimension" gets lost in sustainability projects. Sustain. Dev. 2012, 20, 18-27. [CrossRef]
  16. Robichaud, L.B.; Anantatmula, V.S. Greening project management practices for sustainable construction. J. Manag. Eng. 2011, 27, 48-57. [CrossRef]
  17. Hwang, B.G.; Tan, J.S. Green building project management: Obstacles and solutions for sustainable development. Sustain. Dev. 2012, 20, 335-349. [CrossRef]
  18. Kiesnere, A.L.; Baumgartner, R.J. Sustainability management in practice: Organizational change for sustainability in smaller large-sized companies in Austria. Sustainability 2019, 11, 572. [CrossRef]
  19. Brook, J.W.; Pagnanelli, F. Integrating sustainability into innovation project portfolio management-A strategic perspective. J. Eng. Technol. Manag. 2014, 34, 46-62. [CrossRef]
  20. Silvius, A.J.G.; de Graaf, M. Exploring the project manager's intention to address sustainability in the project board. J. Clean. Prod. 2019, 208, 1226-1240. [CrossRef]
  21. Silvius, G.; Schipper, R. Exploring variety in factors that stimulate project managers to address sustainability issues. Int. J. Proj. Manag. 2020, 38, 353-367. [CrossRef]
  22. Toljaga-Nikolić, D.; Todorović, M.; Dobrota, M.; Obradović, T.; Obradović, V. Project management and sustainability: Playing trick or treat with the planet. Sustainability 2020, 12, 8619. [CrossRef]
  23. Dobrovolskien ė, N.; Pozniak, A.; Tvaronavičien ė, M. Assessment of the sustainability of a real estate project using multi-criteria decision making. Sustainability 2021, 13, 4352. [CrossRef]
  24. Lima, L.; Trindade, E.; Alencar, L.; Alencar, M.; Silva, L. Sustainability in the construction industry: A systematic review of the literature. J. Clean. Prod. 2021, 289, 125730. [CrossRef]
  25. Goel, A.; Ganesh, L.S.; Kaur, A. Sustainability integration in the management of construction projects: A morphological analysis of over two decades' research literature. J. Clean. Prod. 2019, 236, 117676. [CrossRef]
  26. Vandaele, N.J.; Decouttere, C.J. Sustainable R&D portfolio assessment. Decis. Support Syst. 2013, 54, 1521-1532.
  27. Shen, L.Y.; Tam, V.W.Y.; Tam, L.; Ji, Y. bo Project feasibility study: The key to successful implementation of sustainable and socially responsible construction management practice. J. Clean. Prod. 2010, 18, 254-259. [CrossRef]
  28. Silvius, G.; van den Brink, J. Taking responsibility: The integration of sustainability and project management. In Proceedings of the first CARPE networking conference (Consortium of Applied Research and Professional Education-CARPE), Utrecht, The Netherlands, 2-4 November 2011; pp. 26-40.
  29. Gilbert Silvius, A.J.; Schipper, R.; Nedeski, S. Sustainability in Project Management: Reality Bites. PM World J. 2013, II, 1-14.
  30. Martins, V.W.B.; Rampasso, I.S.; Anholon, R.; Quelhas, O.L.G.; Leal Filho, W. Knowledge management in the context of sustainability: Literature review and opportunities for future research. J. Clean. Prod. 2019, 229, 489-500. [CrossRef]
  31. Tejedor, G.; Segalàs, J.; Barrón, Á.; Fernández-Morilla, M.; Fuertes, M.T.; Ruiz-Morales, J.; Gutiérrez, I.; García-González, E.; Aramburuzabala, P.; Hernández, À. Didactic strategies to promote competencies in sustainability. Sustainability 2019, 11, 2086.
  32. Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide), 6th ed.; Project Management Institute Standards Committee, Ed.; Project Management Institute: Philadelphia, PA, USA, 2017; ISBN 978-1-62825-184-5.
  33. International Project Management Association. IPMA "Individual Competence Baseline" Version 4.0; International Project Manage- ment Association: Nijkerk, The Netherlands, 2015; ISBN 978-94-92338-01-3.
  34. Chapman, C.; Ward, S. Project Risk Management: Processes, Techniques and Insights; John Wiley & Sons: Chichester, UK, 1997.
  35. del Caño, A.; de la Cruz, M.P. Integrated Methodology for Project Risk Management. J. Constr. Eng. Manag. 2002, 128, 473-485.
  36. Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide), 7th ed.; Project Management Institute Standards Committee, Ed.; Project Management Institute: Philadelphia, PA, USA, 2021.
  37. de la Cruz López, M.P.; del Caño Gochi, A. Preliminary proposals for establishing effective processes to manage the sustainability objective in projects. In Proceedings of the 19th International Congress on Project Management and Engineering, organizado por AEIPRO-IPMA (Asociación Española de Ingeniería de Proyectos-International Project Management Association), Granada, Spain, 15 July 2015; pp. 15-27.
  38. US Green Building Council. Leadership in Energy and Environmental Design (LEED). 2021. Available online: https://www.usgbc. org/leed (accessed on 28 May 2021).
  39. Institute for Sustainable Infrastructure ENVISION Certification. Available online: https://sustainableinfrastructure.org/ (accessed on 31 May 2021).
  40. Simões, C.L.; Pinto, L.M.C.; Simoes, R.; Bernardo, C.A. Integrating environmental and economic life cycle analysis in product development: A material selection case study. Int. J. Life Cycle Assess. 2013, 18, 1734-1746. [CrossRef]
  41. Gustafsson, M.; Dipasquale, C.; Poppi, S.; Bellini, A.; Fedrizzi, R.; Bales, C.; Ochs, F.; Sié, M.; Holmberg, S. Economic and environmental analysis of energy renovation packages for European office buildings. Energy Build. 2017, 148, 155-165. [CrossRef]
  42. Vahidi, E.; Jin, E.; Das, M.; Singh, M.; Zhao, F. Environmental life cycle analysis of pipe materials for sewer systems. Sustain. Cities Soc. 2016, 27, 167-174. [CrossRef]
  43. Parent, J.; Cucuzzella, C.; Revéret, J.-P. Revisiting the role of LCA and SLCA in the transition towards sustainable production and consumption. Int. J. Life Cycle Assess. 2013, 18, 1642-1652. [CrossRef]
  44. Tsalis, T.; Avramidou, A.; Nikolaou, I.E. A social LCA framework to assess the corporate social pro fi le of companies: Insights from a case study. J. Clean. Prod. 2017, 164, 1665-1676. [CrossRef]
  45. Sureau, S.; Neugebauer, S.; Achten, W.M.J. Different paths in social life cycle impact assessment (S-LCIA)-A classification of type II impact pathway approaches. Int. J. Life Cycle Assess. 2020, 25, 382-393. [CrossRef]
  46. Al-nuaimi, S.; Banawi, A.A.; Al-ghamdi, S.G. Environmental and Economic Life Cycle Analysis of Primary Construction Materials Sourcing under Geopolitical Uncertainties: A Case Study of Qatar. Sustainability 2019, 11, 6000. [CrossRef]
  47. Klöpffer, W. Life-Cycle Based Methods for Sustainable Product Development. Int. J. Life Cycle Assess. 2003, 8, 157-159. [CrossRef]
  48. Oregi, X.; Hernandez, P.; Hernandez, R. Analysis of life-cycle boundaries for environmental and economic assessment of building energy refurbishment projects PHASE. Energy Build. 2017, 136, 12-25. [CrossRef]
  49. Santos, R.; Aguiar Costa, A.; Silvestre, J.D.; Pyl, L. Development of a BIM-based Environmental and Economic Life Cycle Assessment tool. J. Clean. Prod. 2020, 265, 121705. [CrossRef]
  50. Chitsaz, N.; Banihabib, M.E. Comparison of Different Multi Criteria Decision-Making Models in Prioritizing Flood Management Alternatives. Water Resour. Manag. 2015, 29, 2503-2525. [CrossRef]
  51. Wang, W. The concept of sustainable construction project management in international practice. Environ. Dev. Sustain. 2021, in press. [CrossRef]
  52. Sánchez Cordero, A.; Gómez Melgar, S.; Andújar Márquez, J.M. Green building rating systems and the new framework level(s): A critical review of sustainability certification within Europe. Energies 2019, 13, 66. [CrossRef]
  53. BRE Global Limited. BREEAM International New Construction 2016. Technical Manual; BRE Global Limited: Watford, UK, 2016.
  54. Aguado, A.; del Caño, A.; de la Cruz, M.P.; Gómez, D.; Josa, A. Sustainability assessment of concrete structures within the Spanish structural concrete code. J. Constr. Eng. Manag. 2012, 138, 268-276. [CrossRef]
  55. Gómez-López, D.; de La Cruz-López, M.P.; del Caño-Gochi, A.; Arroyo-Cunha, I. Herramienta de cálculo para la evaluación de la sostenibilidad de estructuras de hormigón según la instrucción Española EHE-08. Dyna 2012, 87, 180-189. [CrossRef]
  56. Gómez-López, D.; del Caño, A.; de la Cruz, M.P. Estimación temprana del nivel de sostenibilidad de estructuras de hormigón, en el marco de la instrucción española EHE-08. Inf. Constr. 2013, 65, 65-76.
  57. Ministerio de la Presidencia. Gobierno de España. Real Decreto 1247/2008, de 18 de Julio, Por el Que se Aprueba la Instrucción de Hormigón Estructural (EHE-08). Anejo 13 de la Instrucción; Boletín Oficial del Estado: Madrid, Spain, 2008; pp. 487-504.
  58. Ministerio de Fomento. Gobierno de España Instrucción de Acero Estructural EAE; Ministerio de Fomento: Madrid, Spain, 2011.
  59. Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process; RWS Publications: Pittsburg, PA, USA, 2006.
  60. Saaty, T.L. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9-26. [CrossRef]
  61. Figueira, J.R.; Greco, S.; Roy, B.; Slowinski, R. An Overview of ELECTRE Methods and their Recent Extensions. J. Multi-criteria Decis. Anal. 2013, 20, 61-85. [CrossRef]
  62. Figueira, J.R.; Mousseau, V.; Roy, B. ELECTRE methods. In Multiple Criteria Decision Analysis; Springer: New York, NY, USA, 2016; pp. 155-185, ISBN 978-1-4939-3093-7.
  63. Behzadian, M.; Kazemzadeh, R.B.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198-215. [CrossRef]
  64. Brans, J.P.; Vincke, P. A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision- Making). Manag. Sci. 1985, 31, 647-657. [CrossRef]
  65. e Costa, C.A.B.; Vansnick, J.-C. MACBETH-An interactive path towards the construction of cardinal value functions. Int. Trans. Oper. Res. 1994, 1, 489-500. [CrossRef]
  66. Opricovic, S.; Tzeng, G.-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445-455. [CrossRef]
  67. Stefanović, G.; Milutinović, B.; Vučićević, B.; Denčić-Mihajlov, K.; Turanjanin, V. A comparison of the Analytic Hierarchy Process and the Analysis and Synthesis of Parameters under Information Deficiency method for assessing the sustainability of waste management scenarios. J. Clean. Prod. 2016, 130, 155-165. [CrossRef]
  68. Cartelle Barros, J.J.; Lara Coira, M.; de la Cruz lópez, M.P.; del Caño Gochi, A.; Soares, I. Probabilistic multicriteria environmental assessment of power plants: A global approach. Appl. Energy 2020, 260, 114344. [CrossRef]
  69. SimaPro SimaPro: LCA Software for Fact-Based Sustainability. Available online: https://simapro.com/ (accessed on 20 May 2021).
  70. OpenLCA OpenLCA Software: The Life Cycle of Things. Available online: https://www.openlca.org/ (accessed on 20 May 2021).
  71. Sphera GaBi Software: Improve Your Product Sustainability Performance. Available online: https://gabi.sphera.com/spain/ index/ (accessed on 20 May 2021).
  72. Thinkstep. Professional Database 2018. GaBi Database 2018 LCI Documentation. Available online: https://gabi.sphera.com/ support/gabi/gabi-database-2018-lci-documentation/professional-database-2018/ (accessed on 20 May 2021).
  73. Thinkstep. Energy Database 2018. GaBi Database 2018 LCI Documentation. Available online: https://gabi.sphera.com/support/ gabi/gabi-database-2018-lci-documentation/extension-database-ii-energy/ (accessed on 20 May 2021).
  74. Weidema, B.P.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.O.; Wenet, G. Overview and Methodology. Data Quality Guideline for the Ecoinvent Database Version 3; Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland, 2013.
  75. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182-197. [CrossRef]
  76. Floudas, C.A.; Pardalos, P.M. Encyclopedia of Optimization, 2nd ed.; Floudas, C.A., Pardalos, P.M., Eds.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-74758-3.
  77. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks- Conference Proceedings, Perth, Australia, 27 November-1 December 1995; pp. 1942-1948.
  78. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1-12. [CrossRef]
  79. Almuhtady, A.; Alfaouri, M. Synergy of intelligent design and operation for sustainable residential heating systems, case study: Jordanian residential sector. Sustain. Cities Soc. 2020, 55, 102034. [CrossRef]
  80. Caliskan, H.; Dincer, I.; Hepbasli, A. Exergetic and sustainability performance comparison of novel and conventional air cooling systems for building applications. Energy Build. 2011, 43, 1461-1472. [CrossRef]
  81. Luo, Z.; Zhao, J.; Yao, R.; Shu, Z. Emergy-based sustainability assessment of different energy options for green buildings. Energy Convers. Manag. 2015, 100, 97-102. [CrossRef]
  82. Balta, M.T.; Dincer, I.; Hepbasli, A. Performance and sustainability assessment of energy options for building HVAC applications. Energy Build. 2010, 42, 1320-1328. [CrossRef]
  83. Che, W.W.; Tso, C.Y.; Sun, L.; Ip, D.Y.K.; Lee, H.; Chao, C.Y.H.; Lau, A.K.H. Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy Build. 2019, 201, 202-215. [CrossRef]
  84. Cartelle Barros, J.J.; Lara Coira, M.; de la Cruz López, M.P.; del Caño Gochi, A. Sustainability optimisation of shell and tube heat exchanger, using a new integrated methodology. J. Clean. Prod. 2018, 200, 552-567. [CrossRef]
  85. Cartelle Barros, J.J.; Lara Coira, M.; de la Cruz, M.P.; del Caño, A.; Soares, I. Optimisation Techniques for Managing the Project Sustainability Objective: Application to a Shell and Tube Heat Exchanger. Sustainability 2020, 12, 4480. [CrossRef]
  86. de Madrid: Madrid, Spain, 2011.
  87. Figueroa-Lopez, A.; Arias, A.; Oregi, X.; Rodríguez, I. Evaluation of passive strategies, natural ventilation and shading systems, to reduce overheating risk in a passive house tower in the north of Spain during the warm season. J. Build. Eng. 2021, 43, 102607.
  88. Li, X.; Zhou, W.; Duanmu, L. Research on air infiltration predictive models for residential building at different pressure. Build. Simul. 2021, 14, 737-748. [CrossRef]
  89. Mathur, U.; Damle, R. Impact of air infiltration rate on the thermal transmittance value of building envelope. J. Build. Eng. 2021, 40, 102302. [CrossRef]
  90. de los Ríos-Carmenado, I.; Turek Rahoveanu, A.; Afonso Gallegos, A. Project management competencies for regional development in Romania: Analysis from "Working with People" model. In Procedia Economics and Finance, Proceedings of the 1st International Conference "Economic Scientific Research-Theoretical, Empirical and Practical Approaches", ESPERA 2013, Bucharest, Romania, 11-12 December 2013; Elsevier Procedia: Bucharest, Romania, 2014; Volume 8, pp. 614-621.
  91. Vukomanović, M.; Young, M.; Huynink, S. IPMA ICB 4.0-A global standard for project, programme and portfolio management competences. Int. J. Proj. Manag. 2016, 34, 1703-1705. [CrossRef]
  92. Silvius, G.; Schipper, R.; Planko, J.; van den Brink, J.; Köhler, A. Sustainability in Project Management; Gower Publishing: Surrey, UK, 2012; ISBN 9781409431695.
  93. Silvius, G.; Schipper, R.; Nedeski, S. Consideration of sustainability in projects and project management: An empirical study. In Sustainability Integration for Effective Project Management; Silvius, G., Ed.; IGI Global: Hershey, PA, USA, 2013; pp. 212-233. ISBN 9781466641778.