Ontology-based metrics computation for business process analysis
2009, … of the 4th International Workshop on …
https://doi.org/10.1145/1944968.1944976Abstract
Business Process Management (BPM) aims to support the whole life-cycle necessary to deploy and maintain business processes in organisations. Crucial within the BPM lifecycle is the analysis of deployed processes. Analysing business processes requires computing metrics that can help determining the health of business activities and thus the whole enterprise. However, the degree of automation currently achieved cannot support the level of reactivity and adaptation demanded by businesses. In this paper we argue and show how the use of Semantic Web technologies can increase to an important extent the level of automation for analysing business processes. We present a domain-independent ontological framework for Business Process Analysis (BPA) with support for automatically computing metrics. In particular, we define a set of ontologies for specifying metrics. We describe a domain-independent metrics computation engine that can interpret and compute them. Finally we illustrate and evaluate our approach with a set of general purpose metrics.
References (24)
- REFERENCES
- Conférence Générale des Poids et Mesures. Système International d'Unités. http://www.bipm.org/en/CGPM/db/11/12/, 1960.
- A. K. Alves de Medeiros, C. Pedrinaci, W. van der Aalst, J. Domingue, M. Song, A. Rozinat, B. Norton, and L. Cabral. An Outlook on Semantic Business Process Mining and Monitoring. In Proceedings of International IFIP Workshop On Semantic Web & Web Semantics (SWWS 2007), 2007.
- B. Azvine, Z. Cui, D. D. Nauck, and B. Majeed. Real Time Business Intelligence for the Adaptive Enterprise. In The 8th IEEE International Conference on E-Commerce Technology, Los Alamitos, CA, USA, 2006. IEEE Computer Society.
- M. Castellanos, F. Casati, U. Dayal, and M.-C. Shan. A comprehensive and automated approach to intelligent business processes execution analysis. Distributed and Parallel Databases, 16(3):239-273, 2004.
- S. Chaudhuri, U. Dayal, and V. Ganti. Database Technology for Decision Support Systems. Computer, 34(12):48-55, December 2001.
- J. Gordijn and H. Akkermans. Designing and evaluating e-business models. IEEE Intelligent Systems, 16(4):11-17, 2001.
- D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.-C. Shan. Business Process Intelligence. Computers in Industry, 53(3):321-343, Apr. 2004.
- T. R. Gruber and G. R. Olsen. An Ontology for Engineering Mathematics. In J. Doyle, P. Torasso, and E. Sandewall, editors, Fourth International Conference on Principles of Knowledge Representation and Reasoning, pages 258-269, Bonn, Germany, 1994. Morgan Kaufmann.
- M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel. Semantic Business Process Management: A Vision Towards Using Semantic Web Services for Business Process Management. In F. C. M. Lau, H. Lei, X. Meng, and M. Wang, editors, ICEBE, pages 535-540. IEEE Computer Society, 2005.
- R. S. Kaplan and D. P. Norton. The Balanced Scorecard -Measures that Drive Performance. Harvard Business Review, January/February 1992.
- H. M. Kim, A. Sengupta, M. S. Fox, and M. Dalkilic. A measurement ontology generalizable for emerging domain applications on the semantic web. Journal of Database Management, 18(1):20-42, January-March 2007.
- E. Motta. Reusable Components for Knowledge Modelling. Case Studies in Parametric Design Problem Solving, volume 53 of Frontiers in Artificial Intelligence and Applications. IOS Press, 1999.
- C. Pedrinaci, C. Brelage, T. van Lessen, J. Domingue, D. Karastoyanova, and F. Leymann. Semantic business process management: Scaling up the management of business processes. In Proceedings of the 2nd IEEE International Conference on Semantic Computing (ICSC) 2008, Santa Clara, CA, USA, Aug. 2008. IEEE Computer Society.
- C. Pedrinaci, J. Domingue, and A. K. Alves de Medeiros. A Core Ontology for Business Process Analysis. In 5th European Semantic Web Conference, 2008.
- C. Pedrinaci, D. Lambert, B. Wetzstein, T. van Lessen, L. Cekov, and M. Dimitrov. SENTINEL: A Semantic Business Process Monitoring Tool. In Ontology-supported Business Intelligence (OBI2008) at 7th International Semantic Web Conference (ISWC2008), Karlsruhe, Germany, 2008.
- G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. V. de Velde, and B. Wielinga. Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press, 1999.
- R. Studer, R. Benjamins, and D. Fensel. Knowledge Engineering: Principles and Methods. Data Knowledge Engineering, 25(1-2):161-197, 1998.
- Supply-Chain Council. Supply-Chain Operations Reference-model. http://www.supply-chain.org, 2008.
- M. Thomas, R. Redmond, V. Yoon, and R. Singh. A Semantic Approach to Monitor Business Process Performance. Communications of the ACM, 48(12):55-59, 2005.
- M. Uschold, M. King, S. Moralee, and Y. Zorgios. The Enterprise Ontology. Knowledge Engineering Review, 13(1):31-89, 1998.
- W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business Process Management: A Survey.
- In W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, editors, Business Process Management, volume 2678 of LNCS, pages 1-12. Springer, 2003.
- H. J. Watson and B. H. Wixom. The Current State of Business Intelligence. Computer, 40(9):96-99, 2007.