Academia.eduAcademia.edu

Outline

Radon (222Rn) Radioactivity Level at the BATAN Workplace using RAD7

2020

https://doi.org/10.17146/JAIR.2020.16.2.6000

Abstract

Measurement of Radon ( 222 Rn) radioactivity level at BATAN office Jakarta has been done. Radon is a radioactive emitting alpha particle, very dangerous to the health because if it is inhaled, will be accumulated in the lungs and cause lung cancer. The purpose of the research was to determine the activity concentration of 222 Rn in the workplace and to estimate the dose received by workers. The sampling method is purposive sampling, in several office rooms of the BATAN office (staff room, laboratory, and warehouse), measurement 222 Rn using RAD7 continuously for 24 hours. Based on the activity concentration of 222 Rn in the rooms, an estimate of the effective dose received by the workers while working indoors can be calculated. The results showed that exposure of 222 Rn gas radiation in the workplace was relatively varied, radiation exposure in warehouses was 18.90-32.90 (25.90) Bq.m -3 higher than in laboratory 8.20-34.00 (22.43) Bq.m -3 and staff room 5.40-29.60 (16.68) Bq.m -3 . ...

References (18)

  1. N. Laksminingpuri, R. Prasetio, Nurfadhlini, "Distribusi radioisotop Radon-222 dalam gas tanah di Kawasan Nuklir Pasar Jumat", Prosiding Seminar Nasional APISORA 2018, Pusat Aplikasi Isotop dan Radiasi, Badan Tenaga Nuklir Nasional, pp. 126-131, 2018.
  2. N. Laksminingpuri, R. Prasetio, "Pengukuran isotope radon ( 222 Rn) dalam air tanah", Prosiding Seminar Nasional Pendayagunaan Teknologi Nuklir (SENPATEN), Batan, pp. 303-309, 2017.
  3. Sutarman, Syarbaini, Kusdiana dkk., "Pemantauan lingkungan untuk keselamatan radiasi publik di Indonesia", Prosiding Seminar Nasional Keselamatan Kesehatan dan Lingkungan VI, Jakarta, pp. D1-D19. 2010.
  4. Istofa, B. Santoso, "Perekayasaan perangkat pemantau radon di udara", Prosiding Pertemuan Ilmiah Rekayasa Perangkat Nuklir, PRPN -BATAN, pp. 35-45, 2012.
  5. P.A. Dewi, "Perkiraan paparan radiasi internal gas radon dari pemakaian beton ringan aerasi hebel untuk bahan bangunan", Skripsi, Institut Pertanian Bogor, 2006.
  6. H. Buyukuslu, F.B. Ozdemir, T. O. Oge, H. Gokce. "Indoor and tap water radon ( 222 Rn) concentration measurement at Giresun University Campus Areas". Appl. Radiations Isot, vol. 139, pp. 285-291, 2018.
  7. Peraturan Menteri Ketenagakerjaan Republik Indonesia, "Keselamatan dan kesehatan kerja lingkungan kerja", no. 5, 2018.
  8. Peraturan Menteri Kesehatan Republik Indonesia, "Kesehatan lingkungan rumah sakit", no. 7, 2019.
  9. UNSCEAR, "Sources and effects of ionizing radiation", Book, United Nations New York, 2008.
  10. E. Abuelhia, "Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia", Radiation Physics and Chemistry, vol. 140, pp. 137-140, 2017.
  11. E. Finne, T. Kolstad, Larsson et al., "Significant reduction in indoor radon in Newly Built Houses", Journal of Environmental Radioactivity, vol. 196, pp. 259-263, 2018.
  12. UNSCEAR, "Sources and effects of ionizing radiation", Book, United Nations New York, UNSCEAR, 2000.
  13. UNSCEAR, "Epidemiological studies of radiation and cancer", Report Annex A, UNSCEAR, 2009.
  14. International Commission on Radiological Protection (ICRP), "Occupational intakes of radionuclides", Ann. ICRP 46 3/4, part 3, 2017.
  15. UNSCEAR, "Epidemiological studies of radiation and cancer", Report Annex A, UNSCEAR, 2009.
  16. A. Tanahara, H. Taira, M. Takemura, "Radon distribution and the ventilation on Okinawa of a Limestone Cave", Geochemical Journal, vol. 31(1), pp. 49-56, 1997.
  17. F.S, Erees, G. Yener, "Radon levels in New and Old Buildings", Springer Link, vol. 55, pp. 65-68, 1999.
  18. ICRP, "Radiological protection against radon exposure", Book, vol. 43, no. 3, 2014.