Academia.eduAcademia.edu

Outline

Quantum cluster characters for valued quivers

2015, Transactions of the American Mathematical Society

https://doi.org/10.1090/S0002-9947-2015-06251-5

Abstract

Let F \mathbb {F} be a finite field and ( Q , d ) (Q,\mathbf {d}) an acyclic valued quiver with associated exchange matrix B ~ \tilde {B} . We follow Hubery’s approach to prove our main conjecture from 2011: the quantum cluster character gives a bijection from the isoclasses of indecomposable rigid valued representations of Q Q to the set of non-initial quantum cluster variables for the quantum cluster algebra A | F | ( B ~ , Λ ) \mathcal {A}_{|\mathbb {F}|}(\tilde {B},\Lambda ) . As a corollary we find that for any rigid valued representation V V of Q Q , all Grassmannians of subrepresentations G r e V Gr_{\mathbf {e}}^V have counting polynomials.

References (24)

  1. Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405-455, DOI 10.1016/j.aim.2004.08.003. MR2146350 (2006a:20092)
  2. Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618, DOI 10.1016/j.aim.2005.06.003. MR2249625 (2007f:16033)
  3. CC] Philippe Caldero and Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595-616, DOI 10.4171/CMH/65. MR2250855 (2008b:16015)
  4. CK] Philippe Caldero and Bernhard Keller, From triangulated categories to cluster algebras. II (English, with English and French summaries), Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 983-1009, DOI 10.1016/j.ansens.2006.09.003. MR2316979 (2008m:16031)
  5. DS] M. Ding and J. Sheng, Multiplicative properties of a quantum Caldero-Chapoton map associated to valued quivers, preprint: math/1109.5342v1, 2011.
  6. Ming Ding and Fan Xu, A quantum analogue of generic bases for affine cluster alge- bras, Sci. China Math. 55 (2012), no. 10, 2045-2066, DOI 10.1007/s11425-012-4423-x. MR2972629
  7. A. Efimov, Quantum cluster variables via vanishing cycles, preprint: math.AG/1112.3601v1, 2011. D. RUPEL
  8. Jiarui Fei, Counting using Hall algebras I. Quivers, J. Algebra 372 (2012), 542-559, DOI 10.1016/j.jalgebra.2012.08.018. MR2990026
  9. Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529 (electronic), DOI 10.1090/S0894-0347-01-00385-X. MR1887642 (2003f:16050)
  10. Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121, DOI 10.1007/s00222-003-0302-y. MR2004457 (2004m:17011)
  11. Sergey Fomin and Andrei Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112-164, DOI 10.1112/S0010437X06002521. MR2295199 (2008d:16049)
  12. Peter Gabriel, Unzerlegbare Darstellungen. I (German, with English summary), Manuscripta Math. 6 (1972), 71-103; correction, ibid. 6 (1972), 309. MR0332887 (48 #11212)
  13. Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399-443, DOI 10.2307/1999116. MR675063 (84d:16027)
  14. HU] Dieter Happel and Luise Unger, Almost complete tilting modules, Proc. Amer. Math. Soc. 107 (1989), no. 3, 603-610, DOI 10.2307/2048155. MR984791 (90f:16026)
  15. A. Hubery, Acyclic cluster algebras via Ringel-Hall algebras, preprint: www.maths.leeds.ac.uk/∼ahubery/Cluster.pdf.
  16. Andrew Hubery, Quiver representations respecting a quiver automorphism: a general- isation of a theorem of Kac, J. London Math. Soc. (2) 69 (2004), no. 1, 79-96, DOI 10.1112/S0024610703004988. MR2025328 (2004k:16033)
  17. K] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), no. 1, 57-92, DOI 10.1007/BF01403155. MR557581 (82j:16050)
  18. Q] Fan Qin, Quantum cluster variables via Serre polynomials, J. Reine Angew. Math. 668 (2012), 149-190. With an appendix by Bernhard Keller. MR2948875
  19. Claus Michael Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976), no. 2, 269-302. MR0422350 (54 #10340)
  20. Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR774589 (87f:16027)
  21. Dylan Rupel, On a quantum analog of the Caldero-Chapoton formula, Int. Math. Res. Not. IMRN 14 (2011), 3207-3236, DOI 10.1093/imrn/rnq192. MR2817677 (2012g:13042)
  22. Dylan Rupel, Proof of the Kontsevich non-commutative cluster positivity conjecture (English, with English and French summaries), C. R. Math. Acad. Sci. Paris 350 (2012), no. 21-22, 929-932, DOI 10.1016/j.crma.2012.10.034. MR2996767
  23. O. Schiffmann, Lectures on Hall algebras, preprint: math/0611617v1, 2009.
  24. A. Zelevinsky, Quantum Cluster Algebras: Oberwolfach talk, February 2005, Unpub- lished lecture notes: math.QA/0502260, 2005.