Academia.eduAcademia.edu

Outline

Philosophy of mathematics

Abstract
sparkles

AI

The paper critically examines interpretations of Wittgenstein's propositions on mathematics in the Tractatus, focusing on paragraphs 6.02-6.031 and 6.2-6.241. It highlights the need for accurate exegesis to reconsider the philosophy of mathematics effectively, addressing common misinterpretations by Black and Anscombe. By emphasizing the inductive definition of natural numbers and the operational scheme introduced by Wittgenstein, the paper seeks to clarify fundamental ideas about mathematical calculations and their philosophical implications.

Key takeaways
sparkles

AI

  1. Wittgenstein's philosophy of mathematics highlights the importance of understanding mathematical concepts as rules rather than objects.
  2. The interpretation of numerical identities requires a clear reading of Wittgenstein's Tractatus to avoid misinterpretations.
  3. Proofs in mathematics serve as paradigms, establishing rules for correctness in sign manipulations.
  4. Wittgenstein critiques the extensional understanding of infinite sets, emphasizing the role of generative laws.
  5. The Law of Excluded Middle is not universally applicable in mathematics, particularly regarding unproven propositions.

References (125)

  1. = ( 2(2+3) Ω' 1(2+3) Ω)'x [from definition [III] by substitution of "Ω" with " (2+3) Ω"]
  2. = (( (2+3) Ω'
  3. Ω)' (2+3) Ω)'x [from [B] by substitution of "Ω" with " (2+3) Ω"]
  4. = ((( 2 Ω' 3 Ω)'( 2 Ω' 3 Ω))'( 2 Ω' 3 Ω))'x [definition [IV]]
  5. = ((((Ω'Ω)'(Ω'(Ω'Ω
  6. '((Ω'Ω)'(Ω'(Ω'Ω
  7. = (((Ω'Ω)'(Ω'(Ω'Ω
  8. '((Ω'Ω)'(Ω'(Ω'Ω'
  9. = (((Ω'Ω)'(Ω'(Ω'Ω
  10. '((Ω'Ω)'(Ω'(Ω'Ω
  11. '(Ω'Ω)'(Ω'(Ω'Ω))'x [[C]]
  12. = (((Ω'Ω)'(Ω'(Ω'Ω
  13. '((Ω'Ω)'(Ω'(Ω'Ω
  14. '(Ω'Ω)'Ω'Ω'Ω'x [[C and A]]
  15. = (((Ω'Ω)'(Ω'(Ω'Ω
  16. '((Ω'Ω)'(Ω'(Ω'Ω
  17. 'Ω'Ω'Ω'Ω'Ω'x [[A]]
  18. = ((Ω'Ω)'(Ω'(Ω'Ω
  19. '((Ω'Ω)'(Ω'(Ω'Ω
  20. 'Ω'Ω'Ω'Ω'Ω'x [[C]]
  21. = ((Ω'Ω)'(Ω'(Ω'Ω
  22. '(Ω'Ω)'(Ω'(Ω'Ω))'Ω'Ω'Ω'Ω'Ω'x [[C]]
  23. = ((Ω'Ω)'(Ω'(Ω'Ω
  24. '(Ω'Ω)'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'x [[C and A]]
  25. = ((Ω'Ω)'(Ω'(Ω'
  26. 'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'x [[A]]
  27. = (Ω'Ω)'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'Ω'x [[C and A]]
  28. = Ω 15 ' x [inductive definition in 6.02 and definition of "15"]. the eventual revisionary import of Wittgenstein's approach to mathematics - will be thoroughly re-examined, with reference to the writings of the years 1934- 44, in the last section of Chapter 3. REFERENCES
  29. Ambrose, A. (ed.) ( 1979 ) Wittgenstein's Lectures, Cambridge 1932-1935, Blackwell, Oxford.
  30. Anscombe, G. E. M. ( 1959 ) An Introduction to Wittgenstein's Tractatus, Hutchinson, London.
  31. Ayer, A.J. ( 1985 ) Wittgenstein, Weidenfeld & Nicolson, London.
  32. Baker, G. P. and Hacker, P. M. S. ( 1984 ) Scepticism, Rules and Language, Blackwell, Oxford.
  33. Black, M. ( 1964 ) A Companion to Wittgenstein's Tractatus, Cambridge University Press, London.
  34. Block, I. ( 1975 ) "Showing" in the Tractatus: the root of Wittgenstein and Russell's basic incompatibility, Russell: The Journal of the Bertrand Russell Archives, 17, 4-22; now in V. A. Shanker and S. G. Shanker (eds) Ludwig Wittgenstein: Critical Assessments, Croom Helm, London, 1986, vol. I.
  35. Canfield, John V. ( 1981 ) Critical notice: Lectures on the Foundations of Mathematics, Canadian Journal of Philosophy, 11, 337-56; now in V. A. Shanker and S. G. Shanker (eds) Ludwig Wittgenstein: Critical Assessments, Croom Helm, London, 1986, vol. III.
  36. Diamond, C. (ed.) ( 1976 ) Wittgenstein's Lectures on the Foundations of Mathematics, Cambridge 1939, Cornell University Press, Ithaca, N.Y.
  37. Dummett, M. ( 1959 ) Wittgenstein's philosophy of mathematics, Philosophical Review, 68; now in M. Dummett Truth and Other Enigmas, Duckworth, London, 1978, pp. 166-85.
  38. Dummett, M. ( 1977 ) Elements of Intuitionism, Clarendon Press, Oxford.
  39. Dummett, M. ( 1978a ) Truth and Other Enigmas, Duckworth, London.
  40. Dummett, M. ( 1978b ) Reckonings: Wittgenstein on mathematics, Encounter, 50(3), 63-8; now in V. A. Shanker and S. G. Shanker (eds) Ludwig Wittgenstein: Critical Assessments, Croom Helm, London, 1986, vol. III.
  41. Fogelin, R. J. ( 1968 ) Wittgenstein and intuitionism, American Philosophical Quarterly, 5, 267-74; now in V. A. Shanker and S. G. Shanker (eds) Ludwig Wittgenstein: Critical Assessments, Croom Helm, London, 1986, vol. III.
  42. Fogelin, R. J. ( 1976 ) Wittgenstein (The Arguments of Philosophers), Routledge & Kegan Paul, London.
  43. Frege, G. ( 1879 ) Begriffsschrift -Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Nebert, Halle.
  44. Frege, G. ( 1884 ) Die Grundlagen der Arithmetik -Eine logischmatematische Untersuchung über den Begriff der Zahl, Köbner, Breslau; English translation, The Foundations of Arithmetic, 2nd edn, Blackwell, Oxford, 1980.
  45. Geach, P. and Black, M. (eds) ( 1980 ) Translations from the Philosophical Writings of Gottlob Frege, Blackwell, Oxford.
  46. Hilbert, D. ( 1922 ) Neubegründung der Mathematik, in Gesammelte Abhandlungen, Springer, Berlin, 1935.
  47. Hilbert, D. ( 1925 ) On the infinite, in J. van Heijenoort (ed.) From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931, Harvard University Press, Cambridge, Mass., 1967.
  48. Hilbert, D. ( 1927 ) The foundations of mathematics, in J. van Heijenoort (ed.) From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931, Harvard University Press, Cambridge, Mass., 1967.
  49. Kielkopf, C. ( 1970 ) Strict Finitism: An Examination of Ludwig Wittgenstein's Remarks on the Foundations of Mathematics, Mouton, The Hague.
  50. Kreisel, G. ( 1958 ) Wittgenstein's Remarks on the Foundations of Mathematics, British Journal for the Philosophy of Science, 9.
  51. Kripke, S. ( 1982 ) Wittgenstein on Rules and Private Language, Blackwell, Oxford.
  52. Malcolm, N. ( 1986 ) Nothing is Hidden: Wittgenstein's Criticism of his Early Thought, Blackwell, Oxford.
  53. Marion, M. Wittgenstein and Finitism, forthcoming.
  54. McGinn, C. ( 1984 ) Wittgenstein on Meaning. An Interpretation and Evaluation, Blackwell, Oxford.
  55. McGuinness, B. F. (ed.) ( 1979 ) Ludwig Wittgenstein and the Vienna Circle: Conversations recorded by Friedrich Waismann, trans. J. Schulte and B. F. McGuinness, Blackwell, Oxford.
  56. Pears, D. F. ( 1977 ) The relation between Wittgenstein's picture theory of propositions and Russell's theories of judgement, Philosophical Review, 86.
  57. Pears, D. F. ( 1979 ) Wittgenstein's picture theory and Russell's Theory of Knowledge, in Hal Berghel et al. (eds) Wittgenstein, the Vienna Circle and Critical Rationalism, Proceedings of the Third International Wittgenstein Symposium, Hölder-Pichler- Tempsky, Wien.
  58. Pears, D. F. ( 1987 ) The False Prison: a Study on the Development of Wittgenstein's Philosophy, Clarendon Press, Oxford.
  59. Ramsey, F. P. ( 1923 ) Critical notice of the Tractatus, Mind, 32; in R. B. Braithwaite (ed.) The Foundations of Mathematics and other Logical Essays, Routledge & Kegan Paul, London, 1931.
  60. Ramsey, F. P. ( 1925 ) The foundations of mathematics, Proceedings of the London Mathematical Society, Series 2, 25, Part 5; in R. B. Braithwaite (ed.) The Foundations of Mathematics and other Logical Essays, Routledge & Kegan Paul, London, 1931.
  61. Russell, B. ( 1919 ) Introduction to Mathematical Philosophy, Routledge & Kegan Paul, London.
  62. Russell, B. ( 1922 ) Introduction, in L. Wittgenstein, Tractatus Logico-Philosophicus, Kegan Paul, Trench, Trubner, London, 1922.
  63. Savitt, S. ( 1979 ) Wittgenstein's early philosophy of mathematics, Philosophy Research Archives, 5; now in V. A. Shanker and S. G. Shanker (eds) Ludwig Wittgenstein: Critical Assessments, Croom Helm, London, 1986.
  64. Shanker, V. A. and Shanker, S. G. (eds) ( 1986 ) Ludwig Wittgenstein: Critical Assessments, Croom Helm, London.
  65. Shanker, S. G. ( 1987 ) Wittgenstein and the Turning-Point in the Philosophy of Mathematics, Croom Helm, London.
  66. Skolem, T. ( 1923 ) Begründung der Elementaren Arithmetik durch die Rekurriende Denkweise ohne Anwendung Scheinbarer Veränderlichen mit unendlichen Ausdehnungsbereich, Videnskapsselskapets Skrifter. I Math.-Naturw. Klasse, No. 6; English translation in J. van Heijenoort (ed.) From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931, Harvard University Press, Cambridge, Mass., 1967.
  67. Whitehead, A. N. and Russell, B. ( 1910-13) Principia Mathematica, Cambridge University Press, Cambridge ( 2nd edn, 1957 ).
  68. Wittgenstein, L. ( 1961 ) Notebooks 1914-1916, ed. G. H. von Wright and G. E. M. Anscombe, trans. G. E. M. Anscombe, Blackwell, Oxford.
  69. Wittgenstein, L. ( 1922 ) Tractatus Logico-Philosophicus, trans. D. F. Pears and B. F. McGuinness, Routledge & Kegan Paul, London, 1961, 1963, 1966, 1969.
  70. Wittgenstein, L. ( 1975 ) Philosophical Remarks, ed. R. Rhees, trans. R. Hargreaves and R. White, Blackwell, Oxford, 2nd edn.
  71. Wittgenstein, L. ( 1974 ) Philosophical Grammar, ed. R. Rhees, trans. A. J. P. Kenny, Blackwell, Oxford.
  72. Wittgenstein, L. ( 1958 ) The Blue and Brown Books: Preliminary Studies for the 'Philosophical Investigations', ed. R. Rhees, Blackwell, Oxford.
  73. Wittgenstein, L. ( 1953 ) Philosophical Investigations, ed. G. E. M. Anscombe and R. Rhees, trans. G. E. M. Anscombe, Blackwell, Oxford ( 2nd edn, 1958 ).
  74. Wittgenstein, L. ( 1978 ) Remarks on the Foundations of Mathematics, ed. G. H. von Wright, R. Rhees and G. E. M. Anscombe, trans. G. E. M. Anscombe, Blackwell, Oxford, 3rd edn.
  75. Wittgenstein, L. ( 1981 ) Zettel, ed. G. E. M. Anscombe and G. H. von Wright, trans. G. E. M. Anscombe, Blackwell, Oxford, 2nd edn.
  76. Wright, C. ( 1980 ) Wittgenstein on the Foundations of Mathematics, Duckworth, London.
  77. Wright, C. ( 1982 ) Strict finitism, Synthese, 51.
  78. Wright, C. ( 1990 ) Wittgenstein on mathematical proof, in Wittgenstein Centenary Essays, Royal Institute of Philosophy Lecture Series 28, Supplement to Philosophy, Cambridge University Press, Cambridge.
  79. Wrigley, M. ( 1980 ) Wittgenstein on inconsistency, Philosophy, 55, 471-84, Cambridge University Press, Cambridge ; now in V. A. Shanker and S. G. Shanker (eds) Ludwig Wittgenstein: Critical Assessments, Croom Helm, London, 1986.
  80. Ambrose, A. 178
  81. Anscombe, G. E. M. 1, 4-6, 175-6, 178 arithmetic: and algebra 85; as general geometry 51-3 arithmetical experiments 90-2
  82. Ayer, A. J. 4, 175
  83. Baker, G. P. 182
  84. Bernays, P. 142
  85. Black, M. 1-4, 174-5, 179
  86. Block, I. 4, 7, 175
  87. Brouwer, L. E. J. 40, 42, 43, 106, 108, 167, 181
  88. Canfield, J. V. 183
  89. Cantor's diagonal proof 145, 157-9 Cantorian infinite 96-7
  90. Church, A. 176 community-view of rule-following 122-5 consistency proof 102-6, 171-3
  91. Dedekind, R. 99, 178 decidable arithmetical predicates 57-8
  92. Dummett, M. 146, 148-50, 181-3 equations: and identity of meaning 28-9; and tautologies 27-8; and the world 20-2 existence proof 79 existential generalizations 78-9 finitism 143-5
  93. Fogelin, R. J. 4, 175, 184 forms: and calculation 28-32; and objects 24-5; and vision 30-2 formalism 39-40, 50-6, 163 free-choice sequences 87-8
  94. Frege, G. 27-9, 35-7, 43, 45, 47, 55, 94, 100-1, 115, 161, 164, 171, 178, 181
  95. Geach, P. 178 general and particular 63-4 geometrical cogency of a proof 153-4
  96. Gödel, K. 171
  97. Goodstein, R. L. 180
  98. Hacker, P. M. S. 182
  99. Hardy, G. H. 43, 178
  100. Heine, E. 178
  101. Hilbert, D. 42, 43, 50, 51, 53, 99, 102-3, 163, 166, 178-9, 181 hidden contradictions 99-102 inductive proof 75-6, 80-4 intuition 33, 116-17 Intuitionism 40, 76, 79, 87-8, 106-8 irregular infinite decimals 86-7
  102. Kant, I. 180
  103. Kielkopf, C. 183
  104. Kreisel, G. 141-5, 152, 157-8, 183
  105. Kripke, S. 117-18, 182
  106. Law of Excluded Middle 106-8, 167-71 logicism 25-6, 37-9, 131, 152-6
  107. Macdonald, M. 178
  108. McGinn, C. 118, 182
  109. McGuinness, B. F. 174, 177
  110. Malcolm, N. 177, 182
  111. Marion, M. 180 mathematical conjectures 71 mathematical discovery 68-71
  112. INDEX Ramsey, F. P. 41-2, 73, 163, 178, 181 real numbers 85-92 revisionism 40-1, 108-10, 160-71 rules: and application 114-20; and interpretation 120-2
  113. Russell, B. 2, 23-4, 35-8, 43, 73, 98, 100-1, 161, 171, 174-5, 178, 181
  114. Savitt, S. 4, 175 set theory 95-9
  115. Shanker, S. G. 182
  116. Sheffer, H. M. 2, 70
  117. Skolem, T. 43, 76, 79-85, 103, 178, 180 strict finitism 145-50 sum (in the Tractatus) 18 surveyability 150-2
  118. Thomae, J. 55, 178 transfinite cardinals 159-66
  119. Turing, A. M. 137-8 universal generalizations 73-8 verificationism in mathematics 58-63, 112-14
  120. Waismann, F. 45, 50, 54, 178, 181
  121. Wang, H. 142
  122. Weyl, H. 42-3, 106, 108, 178
  123. Whitehead, A. N. 175
  124. Wright, C. 125, 146-50, 182-4
  125. Wrigley, M. 184