Academia.eduAcademia.edu

Outline

Advances in enzyme bioelectrochemistry

2018, Anais da Academia Brasileira de Ciencias

https://doi.org/10.1590/0001-3765201820170514

Abstract

Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans) where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilizati...

References (195)

  1. ABDELLAOUI S, MILTON RD, QUAH T AND MINTEER SD. 2016. NAD-dependent dehydrogenase bioelectrocatalysis: the ability of a naphthoquinone redox polymer to regenerate NAD. Chem Commun 52: 1147- 1150.
  2. ALKIRE RC, KOLB DM AND LIPKOWSKI K. 2011. Bioelectrochemistry: fundamentals, applications and recent developments. New Jersey: Wiley-VCH, 411 p. ANDREESCU S AND MARTY JL. 2006. Twenty years research in cholinesterase biosensors: From basic research to practical applications. Biomol Eng 23: 1-15.
  3. ARMSTRONG FA. 1990. Probing metalloproteins by voltammetry. Struct Bonding 72: 137-230.
  4. ARMSTRONG FA. 2002. Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions. J Chem Soc Dalton Trans 5: 661-671.
  5. ARMSTRONG FA, HEERING HA AND HIRST J. 1997. Reactions of complex metalloproteins studied by protein- film voltammetry. Chem Soc Rev 26: 169-179.
  6. ARMSTRONG FA, HILL HAO AND WALTON NJ. 1982. Direct electrochemical oxidation of Clostridium pasteurianum ferredoxin: identification of facile electron- transfer processes relevant to cluster degradation. FEBS Lett 150: 214-218.
  7. ARTZ JH ET AL. IN PRESS. The reduction potentials of [FeFe]-hydrogenase accessory iron-sulfur clusters provide insights into the energetics of proton reduction catalysis. J Am Chem Soc.
  8. ASH PA ET AL. 2017a. Generating single metalloprotein crystals in well-defined redox states: electrochemical control combined with infrared imaging of a NiFe hydrogenase crystal. Chem Commun 53: 5858-5861.
  9. ASH PA, HIDALGO R AND VINCENT KA. 2017b. Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy. ACS Catal 7: 2471- 2485.
  10. ASH PA, LIU J, COUTARD N, HEIDARY N, HORCH M, GUDIM I, SIMLER T, ZEBGER I, LENZ O AND VINCENT KA. 2015. Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from Ralstonia eutropha with O 2 and CO. J Phys Chem B 119: 13807-13815.
  11. ASH PA AND VINCENT KA. 2016. Vibrational spectroscopic techniques for probing bioelectrochemical systems. Adv Biochem Eng/Biotechnol 158: 75-110.
  12. AZAMIAN BR, DAVIS JJ, COLEMAN KS, BAGSHAW CB AND GREEN MLH 2002. Bioelectrochemical single- walled carbon nanotubes. J Am Chem Soc 124: 12664- 12665.
  13. BANKAR SB, BULE MV, SINGHAL RS AND ANANTHANARAYAN L. 2009. Glucose oxidase -An overview. Biotechnol Adv 27: 489-501.
  14. BARBOSA O, ORTIZ C, BERENGUER-MURCIA A, TORRES R, RODRIGUES RC AND FERNANDEZ- LAFUENTE R. 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4: 1583-1600.
  15. BARD AJ AND FAULKNER LR. 1980. Electrochemical methods: fundamentals and applications. New York: Wiley, 864 p.
  16. BARD AJ, STRATMANN M AND WILSON GS. 2002. Encyclopedia of electrochemistry: bioelectrochemistry: Vol. 9. New Jersey: Wiley VCH, 672 p.
  17. BARTELS P, ZHOU A, ARNOLD A, NUNEZ N, CRESPILHO F, DAVID S AND BARTON J. 2017. Electrochemistry of the [4Fe4S] Cluster in Base Excision Repair Proteins: Tuning the Redox Potential with DNA. Langmuir 33: 2523-2530.
  18. BARTLETT P. 2008. Bioelectrochemistry: fundamentals, experimental techniques and applications. New Jersey: J Wiley & Sons, 494 p.
  19. BARTLETT PN, TEBBUTT P AND WHITAAKER RG. 1991. Kinetic aspects of the use of modified electrodes and mediators in bioelectrochemistry. Prog React Kinet 16: 55-155.
  20. BEINERT H, HOLM RH AND MÜNCK E. 1997. Iron- sulfur clusters: nature´s modular, multipurpose structures. Science 277: 563-569.
  21. BEREZIN IV, BOGDANOVSKAYA VA, VARFOLOMEEV SD, TARASEVICH MR AND YAROPOLOV A. I. 1978. Bioelectrocatalysis. Equilibrium oxygen potential in the presence of laccase. Dokl Akad Nauk 240: 615-618.
  22. BERNSTEIN EM. 2008. Bioelectrochemistry research developments. UK: Nova Science Publishers, 239 p. BEYENAL H AND BABAUTA JT. 2015. Biofilms in bioelectrochemical systems: from laboratory practice to data interpretation. New Jersey: Wiley, 416 p. BOGUSLAVSKY LI, GENG L KOVALEV IP, SAHNI SK, XU Z AND SKOTHEIM TA. 1995. Amperometric thin- film biosensors based on glucose dehydrogenase and toluidine blue O as catalyst for NADH electrooxidation. Biosens Bioelectron 10: 693-704.
  23. BRDICKA R. 1933. Polarographic studies with the dropping mercury kathode. Part XXXI. A new test for proteins in the presence of cobalt salts in ammoniacal solutions of ammonium chloride. Collect Czech Chem Commun 5: 112-128.
  24. CAI CX AND CHEN J. 2004. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal Biochem. 325: 285-292.
  25. CAO L AND SCHMID RD. 2005. Carrier-bound immobilized enzymes: principles, application and design. New Jersey: Wiley VCH, 578 p. CARDOSI MF AND TURNER APF. 1987. Biosensors: fundamentals and applications. Oxford: Oxford University Press, 786 p.
  26. CARTER MT, ROWE GK, RICHARDSON JN, TENDER LM, TERRILL RH AND MURRAY RW. 1995. Distance dependence of the low-temperature electron-transfer kinetics of (ferrocenylcarboxy)-terminated alkanethiol monolayers. J Am Chem Soc 117: 2896-2899.
  27. CASELI L, CRESPILHO FN, NOBRE TM, ZANIQUELLI MED, ZUCOLOTTO V AND OLIVEIRA ON. 2008. Using phospholipid Langmuir and Langmuir-Blodgett films as matrix for urease immobilization. J Colloid Interface Sci 319: 100-108.
  28. CHAUBEY A AND MALHOTRA BD. 2002. Mediated biosensors. Biosens Bioelectron 17: 441-456.
  29. CHEN PH AND MCCREERY RL. 1996. Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68: 3958-3965.
  30. CHEN T, BARTON SC, BINYAMIN G, GAO ZQ, ZHANG YC, KIM HH AND HELLER A. 2001. A miniature biofuel cell. J Am Chem Soc 123: 8630-8631.
  31. CHIDSEY CED. 1991. Free-energy and temperature- dependence of electron-transfer at the metal-electrolyte interface. Science 251: 919-922.
  32. CINQUIN P ET AL. 2010. A glucose biofuel cell implanted in rats. PLoS One 5: e10476.
  33. COONEY MJ, SVOBODA V, LAU C, MARTIN G AND MINTEER SD. 2008. Enzyme catalysed biofuel cells. Energy Environ Sci 1: 320-337.
  34. COSNIER S. 2015. Electrochemical biosensors. Danvers: Pan Stanford. 412 p.
  35. COSNIER S, MOUSTY C, GONDRAN C AND LEPELLEC A. 2006. Entrapment of enzyme within organic and inorganic materials for biosensor applications: Comparative study. Mater Sci Eng C 26: 442-447.
  36. COURJEAN O, GAO F AND MANO N. 2009. Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem Int Ed 48: 5897-5899.
  37. CRESPILHO FN. 2013. Nanobioelectrochemistry: from implantable biosensors to green power generation. New York: Springer, 137 p.
  38. ANDRESSA R. PEREIRA et al.
  39. CRESPILHO FN, ESTEVES MC, SUMODJO PTA, PODLAHA EJ AND ZUCOLOTTO V. 2009a. Development of highly selective enzymatic devices based on deposition of permselective membranes on aligned nanowires. J Phys Chem C 113: 6037-6041.
  40. CRESPILHO FN, GHICA ME, FLORESCU M, NART FC, OLIVEIRA ON AND BRETT CMA. 2006a. A strategy for enzyme immobilization on layer-by-layer dendrimer- gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem Commun 8: 1665-1670.
  41. CRESPILHO FN, GHICA ME, GOUVEIA-CARIDADE C, OLIVEIRA ON AND BRETT CMA. 2008. Enzyme immobilisation on electroactive nanostructured membranes (ENM): Optimised architectures for biosensing. Talanta 76: 922-928.
  42. CRESPILHO FN, IOST RM, TRAVAIN SA, OLIVEIRA ON AND ZUCOLOTTO V. 2009b. Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens Bioelectron 24: 3073-3077.
  43. CRESPILHO FN, ZUCOLOTTO V, BRETT CMA, OLIVEIRA ON AND NART FC. 2006b. Enhanced charge transport and incorporation of redox mediators in layer- by-layer films containing PAMAM-encapsulated gold nanoparticles. J Phys Chem B 110: 17478-17483.
  44. CRESPILHO FN, ZUCOLOTTO V, OLIVEIRA ON AND NART FC. 2006c. Electrochemistry of layer-by-layer films: a review. Int J Electrochem Sci 1: 194-214.
  45. CZABAN JD. 1985. Electrochemical sensors in clinical chemistry: yesterday, today, tomorrow. Anal Chem 57: A345-356A.
  46. DAI ZH, LIU SQ, JU HX AND CHEN HY. 2004. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens Bioelectron 19: 861-867.
  47. DATTA S, CHRISTENA LR AND RAJARAM YRS. 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3: 1-9.
  48. DAVIS F AND HIGSON SPJ. 2007. Biofuel cells -Recent advances and applications. Biosens Bioelectron 22: 1224- 1235.
  49. DAVIS JJ, COLES RJ AND HILL HAO. 1997. Protein electrochemistry at carbon nanotube electrodes. J Electroanal Chem 440: 279-282.
  50. DE SOUZA JCP, IOST RM AND CRESPILHO FN. 2016. Nitrated carbon nanoblisters for high-performance glucose dehydrogenase bioanodes. Biosens Bioelectron 77: 860- 865.
  51. DE SOUZA JCP, SILVA WO, LIMA FHB AND CRESPILHO FN. IN PRESS. Enzyme activity evaluation by differential electrochemical mass spectrometry. Chem Commun.
  52. DEGANI Y AND HELLER A. 1989. Electrical communication between redox centers of glucose oxidase and electrodes via electrostatically and covalently bound redox polymers. J Am Chem Soc 111: 2357-2358.
  53. DRYHURST G. 2012. Biological electrochemistry. Academic Press, 548 p.
  54. DWEK RA, EDGE CJ AND HARVEY DJ, WORMALD MR AND PAREKH RB. 1993. Analysis of glycoprotein- associated oligosaccharides. Annu Rev Biochem 62: 65- 100. EDDOWES MJ AND HILL H. 1977. Novel method for investigation of electrochemistry of metalloproteins - Cytochrome-C. J Chem Soc Chem: Commun 771-772.
  55. EDGE ASB, FALTYNEK CR, HOF L, REICHERT JUNIOR LE AND WEBER P. 1981. Deglycosylation of glycoproteins by trifluormethanesulfonic acid. Anal Biochem 118: 131-137.
  56. FALK M, BLUM Z AND SHLEEV S. 2012. Direct electron transfer based enzymatic fuel cells. Electrochim. Acta 82: 191-202.
  57. FALK M, VILLARRUBIA CWN, BABANOVA S, ATANASSOV P AND SHLEEV S. 2013. Biofuel cells for biomedical applications: colonizing the animal kingdom. ChemPhysChem 14: 2045-2058.
  58. FERRI S, KOJIMA K AND SODE K. 2011. Review of glucose oxidases and glucose dehydrogenases: a bird´s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5: 1068- 1076.
  59. FORROW NJ, SANGHERA GS AND WALTERS SJ. 2002. The influence of structure in the reaction of electrochemically generated ferrocenium derivatives with reduced glucose oxidase. J Chem Soc Dalton Trans 16: 3187-3194.
  60. FOULDS NC. AND LOWE CR. 1986. Enzyme entrapment in electrically conducting polymers -Immobilization of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. J Soc Chem Faraday Trans 1(82): 1259-1264.
  61. FOULDS NC AND LOWE CR. 1988. Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Anal Chem 60: 2473-2478.
  62. FREW JE AND HILL HAO. 1988. Direct and indirect electron-transfer between electrodes and redox proteins. Eur J Biochem 172: 261-269.
  63. GAN X, LIU T, ZHU XL AND LI GX. 2004. An electrochemical biosensor for nitric oxide based on silver nanoparticles and hemoglobin. Anal Sci 20: 1271-1275.
  64. GAO H AND DUAN H. 2015. 2D and 3D graphene materials: preparation and bioelectrochemical applications. Biosens Bioelectron 65: 404-419.
  65. GHINDILIS AL, ATANASOV P AND WILKINS E. 1997. Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications. Electroanalysis 9: 661-674.
  66. GOODING JJ, WIBOWO R, LIU JQ, YANG WR, LOSIC D, ORBONS S, MEARNS FJ, SHAPTER JG AND HIBBERT DB. 2003. Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125: 9006-9007.
  67. GORTON L AND DOMINGUEZ E. 2002. Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev Mol Biotechnol 82: 371-392.
  68. GORTON L, LINDGREN A, LARSSON T, MUNTEANU FD, RUZGAS T AND GAZARYAN I. 1999. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta 400: 91-108.
  69. GRABARCZYK DB, ASH PA AND VINCENT KA. 2014. Infrared spectroscopy provides insight into the role of dioxygen in the nitrosylation pathway of a [2Fe2S] cluster iron-sulfur protein. J Am Chem Soc 136: 11236-11239.
  70. GRUBB WT. 1963. Catalysis, electrocatalysis, and hydrocarbon fuel cells. Nature 198: 883-884.
  71. GUIDELLI R. 2016. Bioelectrochemistry of biomembranes and biomimetic membranes. New Jersey: Wiley, 352 p. GUIDELLI R, ALOISI G, BECUCCI L, DOLFI A, MONCELLI MR AND BUONINSEGNI FT. 2001. New directions and challenges in electrochemistry -Bioelectrochemistry at metal/water interfaces. J Electroanal Chem 504: 1-28.
  72. GUILBAULT GG. 1984. Analytical uses of immobilized enzymes. In: Pye EK and Wingard Jr. LB (Eds), Enzyme Engineering. New York: Springer US, p. 377-383.
  73. GUISEPPI-ELIE A, LEI CH AND BAUGHMAN RH. 2002. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13: 559-564.
  74. GUISÁN JM. 2006. Immobilization of enzymes and cells. New Jersey: Humana Press, 449 p.
  75. GULABOSKI R, MIRCESKI V, BOGESKI I AND HOTH M. 2012. Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. J Solid State Electrochem 16: 2315-2328.
  76. GUO LH AND HILL HAP. 1991. Direct electrochemistry of proteins and enzymes. Adv Inorg Chem 36: 341-375.
  77. HABEEB AFS AND HIRAMORO R. 1968. Reaction of proteins with glutaraldehyde. Arch Biochem Biophys 126: 16-26.
  78. HALAMKOVA L, HALAMEK J, BOCHAROVA V, SZCZUPAK A, ALFONTA L AND KATZ E. 2012. Implanted biofuel cell operating in a living snail. J Am Chem Soc 134: 5040-5043.
  79. HAMMER B AND NORSKOV JK. 1995. Electronic factors determining the reactivity of metal surfaces. Surf Sci 343: 211-220.
  80. HAMMER B, NORSKOV JK, GATES BC AND KNOZINGER H. 2000. Theoretical surface science and catalysis -Calculations and concepts. Adv Catal 45: 71- 129. HAMMERICH O AND ULSTRUP J. 2007. Bioinorganic electrochemistry. Springer, 310 p.
  81. HAYAT MA. 1989. Colloid gold: principles, methods, and applications. San Diego: Academic Press, 536 p. HEALY AJ, ASH PA, LENZ O AND VINCENT KA. 2013. Attenuated total reflectance infrared spectroelectrochemistry at a carbon particle electrode; unmediated redox control of a [NiFe]-hydrogenase solution. Phys Chem Chem Phys 15: 7055-7059.
  82. HEALY AJ, REEVE HA AND VINCENT KA. 2011. Development of an infrared spectroscopic approach for studying metalloenzyme active site chemistry under direct electrochemical control. Faraday Discuss 148: 345-357.
  83. HELLER A. 1992. Electrical connection of enzyme redox centers to electrodes. J Phys Chem 96: 3579-3587.
  84. HELLER A AND DEGANI Y. 1998. Redox chemistry and interfacial behavior of biological molecules. New York: Plenum Press, 672 p. HEXTER SV, ESTERLE TF AND ARMSTRONG FA. 2014. A unified model for surface electrocatalysis based on observations with enzymes. Phys Chem Chem Phys 16: 11822-11833.
  85. HIDALGO R, ASH PA, HEALY AJ AND VINCENT KA. 2015. Infrared spectroscopy during electrocatalytic turnover reveals the Ni-L active site state during H 2 oxidation by a NiFe hydrogenase. Angew Chem Int Ed 54: 7110-7113.
  86. HILLIARD LR, ZHAO XJ AND TAN WH. 2002. Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal Chim Acta 470: 51-56.
  87. HUSH NS. 1958. Adiabatic rate processes at electrodes. 1. Energy-charge relationships. J Phys Chem 28: 962-972.
  88. IOST RM AND CRESPILHO FN. 2012. Layer-by-layer self- assembly and electrochemistry: applications in biosensing and bioelectronics. Biosens Bioelectron 31: 1-10.
  89. IOST RM, DA SILVA WC, MADURRO JM, MADURRO AGB, FERREIRA LF AND CRESPILHO FN. 2011a. Electrochemical nano(bio)sensors: advances, diagnosis and monitoring of diseases. Front Biosci E3 663-689.
  90. IOST RM, MADURRO JM, MADURRO AGB, NANTES IL, CASELI L AND CRESPILHO FN. 2011b. Strategies of nano-manipulation for application in electrochemical biosensors. Int J Electrochem Sci 6: 2965-2997.
  91. IOST RM, SALES FCPF, MARTINS MVA, ALMEIDA MC AND CRESPILHO FN. 2015. Glucose biochip based on flexible carbon fiber electrodes: in vivo diabetes evaluation in rats. ChemElectroChem 2: 518-521.
  92. IVNITSKI D, BRANCH B, ATANASSOV P AND APBLETT C. 2006. Glucose oxidase anode for biofuel cell based on direct electron transfer. Electrochem Commun 8: 1204- 1210.
  93. JESIONOWSKI T, ZDARTA J AND KRAJEWSKA B. 2014. Enzyme immobilization by adsorption: a review. Adsorption 20: 801-821.
  94. ANDRESSA R. PEREIRA et al. JEUKEN L. 2016. Biophotoelectrochemistry: from bioelectrochemistry to biophotovoltaics. Switzerland: Springer International, 190 p. JEUKEN LJC, JONES AK, CHAPMAN SK, CECCHINI G AND ARMSTRONG FA. 2002. Electron-transfer mechanisms through biological redox chains in multicenter enzymes. J Am Chem Soc 124: 5702-5713.
  95. JONSSON G, GORTON L AND PETTERSSON L. 1989. Mediated electron transfer from glucose oxidase at a ferrocene-modified graphite electrode. Electroanalysis 1: 49-55.
  96. KANG XH, WANG J, WU H, AKSAY IA, LIU J AND LIN YH. 2009. Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25: 901-905.
  97. KATCHALSKIKATZIR E. 1993. Immobilized enzymes -learning from past successes and failures. Trends Biotechnol. 11: 471-478.
  98. KATZ E. 2014. Implantable bioelectronics: devices, materials and applications. New Jersey: Wiley VCH, 472 p.
  99. KATZ E, BUCKMANN AF. AND WILLNER I. 2001. Self- powered enzyme-based biosensors. J Am Chem Soc 123: 10752-10753.
  100. KATZ E, LOTZBEYER T, SCHLERETH DD, SCHUHMANN W AND SCHMIDT HL. 1994. Electrocatalytic oxidation of reduced nicotinamide coenzymes at gold and platinum electrode surfaces modified with a monolayer of pyrroloquinoline quinone -effect of Ca 2+ cations. J Electroanal Chem 373: 189-200.
  101. KATZ E, SHIPWAY AN AND WILLNER I. 2007. Mediated electron-transfer between redox-enzymes and electrode supports. In Encyclopedia of Electrochemistry. Wiley- VCH. KATZ E AND WILLNER I. 2004. Integrated nanoparticle- biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43: 6042-6108.
  102. KAUFFMANN JM AND GUILBAULT GG. 1992. Enzyme electrode biosensors: theory and applications. In Bioanalytical application of enzymes, Methods of Biochemical Analysis, New York: Willey, p. 66-113.
  103. KAVANAGH P AND LEECH D. 2013. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives. Phys Chem Chem Phys 15: 4859-4869.
  104. KLIBANOV AM. 1979. Enzyme stabilization by immobilization. Anal Biochem 93: 1-25.
  105. KLOTZBACH TL, WATT M, ANSARI Y AND MINTEER SD. 2008. Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion polymers. J Membr Sci 311: 81-88.
  106. KRZEMINSKI L, NDAMBA L, CANTERS GW, AARTSMA TJ, EVANS SD AND JEUKEN LJC. 2011. Spectroelectrochemical investigation of intramolecular and interfacial electron-transfer rates reveals differences between nitrite reductase at rest and during turnover. J Am Chem Soc 133: 15085-15093.
  107. KUILA T, BOSE S, KHANRA P, MISHRA AK, KIM NH AND LEE JH. 2011. Recent advances in graphene-based biosensors. Biosens Bioelectron 26: 4637-4648.
  108. LAVIRON E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101: 19-28.
  109. LE GOFF A, HOLZINGER M AND COSNIER S. 2011. Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Analyst 136: 1279-1287.
  110. LEBEDEVA NP, KOPER MTM, FELIU JM AND VAN SANTEN RA. 2002. Role of crystalline defects in electrocatalysis: Mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes. J Phys Chem B 106: 12938-12947.
  111. LEE CA AND TSAI YC. 2009. Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sens Actuators B 138: 518-523.
  112. LI D, MULLER MB, GILJE S, KANER RB AND WALLACE GG. 2008a. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3: 101-105.
  113. LI XL, ZHANG GY, BAI XD, SUN XM, WANG XR, WANG E AND DAI HJ. 2008b. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3: 538-542.
  114. LIU AH, WEI MD, HONMA I AND ZHOU HS. 2005. Direct electrochemistry of myoglobin in titanate nanotubes film. Anal Chem 77: 8068-8074.
  115. LUZ RAS AND CRESPILHO FN. 2016. Gold nanoparticle- mediated electron transfer of cytochrome c on a self- assembled surface. RSC Adv 6: 62585-62593.
  116. LUZ, RAS, IOST RM AND CRESPILHO FN. 2013. Nanomaterials for biosensors and implantable biodevices. New York: Springer.
  117. LUZ RAS, PEREIRA AR, DE SOUZA JCP, SALES FCPF AND CRESPILHO FN. 2014. Enzyme biofuel cells: thermodynamics, kinetics and challenges in applicability. ChemElectroChem 1: 1751-1777.
  118. LY HK, SEZER M, WISITRUANGSAKUL N, FENG JJ, KRANICH A, MILLO D, WEIDINGER IM, ZEBGER I, MURGIDA DH AND HILDEBRANDT P. 2011. Surface- enhanced vibrational spectroscopy for probing transient interactions of proteins with biomimetic interfaces: electric field effects on structure, dynamics and function of cytochrome c. FEBS J 278: 1382-1390.
  119. MACVITTIE K, CONLON T AND KATZ E. 2015. A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry 106: 28-33.
  120. MACVITTIE K, HALAMEK J, HALAMKOVA L, SOUTHCOTT M, JEMISON WD, LOBELD R AND KATZ E. 2013. From "cyborg" lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6: 81-86.
  121. MARCUS RA. 1956. On the theory of oxidation-reduction reactions involving electron transfer. J Chem Phys 24: 966-978.
  122. MARRITT, SJ, VAN WONDEREN JH, CHEESMAN MR AND BUTT JN. 2006. Magnetic circular dichroism of hemoproteins with in situ control of electrochemical potential: "MOTTLE". Anal Biochem 359: 79-83.
  123. MARTINS, MVA, PEREIRA AR, LUZ RAS, IOST RM AND CRESPILHO FN. 2014. Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes. Phys Chem Chem Phys 16: 17426-17436.
  124. MASA J AND SCHUHMANN W. 2016. Electrocatalysis and bioelectrocatalysis -Distinction without a difference. Nano Energy 29: 466-475.
  125. MATEO C, PALOMO JM, FERNANDEZ-LORENTE G, GUISAN, JM AND FERNANDEZ-LAFUENTE R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40: 1451-1463.
  126. MAY SW. 1999. Applications of oxidoreductases. Curr Opin Biotechnol 10: 370-375.
  127. MAY SW AND PADGETTE SR. 1983. Oxidoreductase enzymes in biotechnology -current status and future potential. Bio-Technology 1: 677-686.
  128. MCCALL KA, HUANG CC, AND FIERKE CA. 2000. Function and mechanism of zinc metalloenzymes. J Nutr 130: 1437S-1446S.
  129. MCCORD JM AND FRIDOVICH I. 1970. The utility of superoxide dismutase in studying free radical reactions. J Biol Chem 245: 1374-1377.
  130. MCCRORY CCL, UYEDA C AND PETERS JC. 2012. Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles. J Am Chem Soc 134: 3164-3170.
  131. MIYAKE T, HANEDA K, NAGAI M, YATAGAWA Y, ONAMI H, YOSHINO S, ABE T AND NISHIZAWA M. 2011. Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ Sci 4: 5008-5012.
  132. MOEHLENBROCK MJ AND MINTEER SD. 2008. Extended lifetime biofuel cells. Chem Soc Rev 37: 1188-1196.
  133. MURRAY RW. 1984. Chemically modified electrodes. In: Bard JA (Ed), Electroanalytical Chemistry. New York: Marcel Dekker, p. 191-368.
  134. MUSAMEH M, WANG J, MERKOCI A AND LIN YH. 2002. Low-potential stable NADH detection at carbon-nanotube- modified glassy carbon electrodes. Electrochem Commun 4: 743-746.
  135. NELSON DL AND COX MM. 2005. Principles of Biochemistry. New York: Freeman and Company, 1340 p. OLIVEIRA ON, IOST RM, SIQUEIRA JR, CRESPILHO FN AND CASELI L. 2014. Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6: 14745-14766.
  136. OLYVEIRA GM, IOST RM, LUZ RAS AND CRESPILHO FN. 2012a. Biofuel cells: bioelectrochemistry applied to the generation of green electricity. In: de Souza FL and Leite ER (Eds), Nanoenergy.Berlin: Springer, p. 101-123.
  137. OLYVEIRA GM, KIM JH, MARTINS MVA, IOST RM, CHAUDHARI KN, YU JS AND CRESPILHO FN. 2012b. Flexible carbon cloth electrode modified by hollow core- mesoporous shell carbon as a novel efficient bio-anode for biofuel cell. J Nanosci Nanotechnol 12: 356-360.
  138. PAENGNAKORN P, ASH PA, SHAW S, DANYAL K, CHEN T, DEAN DR, SEEFELDT LC AND VINCENT KA. 2017. Infrared spectroscopy of the nitrogenase MoFe protein under electrochemical control: potential-triggered CO binding. Chem Sci 8: 1500-1505.
  139. PAGE CC, MOSER CC, CHEN XX AND DUTTON PL. 1999. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402: 47-52.
  140. PANDEY PC. 1988. A new conducting polymer-coated glucose sensor. J Chem Soc Faraday Trans I 84: 2259-2265.
  141. PATEL T, BRUCE J, MERRY A, BIGGE C, WORMALD M, JAQUES A AND PAREKH R. 1993. Use of hydrazine to release in intact and unreduced form both N-linked and O-linked oligosaccharides from glycoproteins. Biochemistry 32: 679-693.
  142. PATOLSKY F, TAO G, KATZ E AND WILLNER I. 1998. C 60 -mediated bioelectrocatalyzed oxidation of glucose oxidase. J Electroanal Chem 454: 9-13.
  143. PEREIRA AR, DE SOUZA JCP, GONÇALVES AD, PAGNONCELLI KC AND CRESPILHO FN. 2017a. Bioelectrooxidation of ethanol using NAD-dependent alcohol dehydrogenase on oxidized flexible carbon fiber arrays. J Bras Chem Soc 28: 1698-1707.
  144. PEREIRA AR, DE SOUZA JCP, IOST RM, SALES FCPF AND CRESPILHO FN. 2016. Application of carbon fibers to flexible enzyme electrodes. J Electroanal Chem 780: 396-406.
  145. PEREIRA AR, IOST RM, MARTINS MVA, YOKOMIZO CH, DA SILVA WC, NANTES IL AND CRESPILHO FN. 2011. Molecular interactions and structure of a supramolecular arrangement of glucose oxidase and palladium nanoparticles. Phys Chem Chem Phys 13: 12155-12162.
  146. PEREIRA AR, LUZ RAS, DALMATI FCDA AND CRESPILHO FN. 2017b. Protein oligomerization based on Brønsted acid reaction. ACS Catal 7: 3082-3088.
  147. ANDRESSA R. PEREIRA et al.
  148. PORATH J, CARLSSON J, OLSSON I AND BELFRAGE G. 1975. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258: 598-599.
  149. PREVOTEAU A, COURJEAN O AND MANO N. 2010. Deglycosylation of glucose oxidase to improve biosensors and biofuel cells. Electrochem Commun 12: 213-215.
  150. RABAEY K, ANGENENT L AND SCHRODER U. 2009. Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. London: IWA Publishing, 524 p. RASMUSSEN M, RITZMANN RE, LEE I, POLLACK AJ AND SCHERSON D. 2012. An implantable biofuel cell for a live insect. J Am Chem Soc 134: 1458-1460.
  151. REDDAIAH K AND REDDY TM. 2014. Electrochemical biosensor based on silica sol-gel entrapment of horseradish peroxidase onto the carbon paste electrode toward the determination of 2-aminophenol in non-aqueous solvents: A voltammetric study. J Mol Liq 196: 77-85.
  152. REEVES JH, SONG S AND BOWDEN EF. 1993. Application of square-wave voltammetry to strongly adsorbed quasi- reversible redox molecules. Anal Chem 65: 683-688.
  153. REUILLARD B, LE GOFF A, AGNES C, HOLZINGER M, ZEBDA A, GONDRAN C, ELOUARZAKI K AND COSNIER S. 2013. High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Phys Chem Chem Phys 15: 4892-4896.
  154. RUSLING JF, WANG B AND YUN S. 2008. Electrochemistry of redox enzymes. In: Bartlett P (Ed), Bioelectrochemistry: fundamentals, experimental techniques and applications. J Wiley & Sons, p. 39-85.
  155. RUSLING JF AND ZHANG Z. 2001. Thin films on electrodes for direct protein electron transfer. In: Nalwa RW (Ed), Handbook of surfaces and interfaces of materials. San Diego: Academic Press, p. 33-71.
  156. RUSLING JF. 2003. Designing functional biomolecular films on electrodes. In: Rusling JF (Ed), Biomolecular films. New York: Marcel Dekker, p. 1-64.
  157. SALES FCPF, IOST RM, MARTINS MVA, ALMEIDA MC AND CRESPILHO FN. 2013. An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip 13: 468-474.
  158. SALVERDA JM, PATIL AV, MIZZON G, KUZNETSOVA S, ZAUNER G, AKKILIC N, CANTERS GW, DAVIS JJ, HEERING HA AND AARTSMA TJ. 2010. Fluorescent cyclic voltammetry of immobilized azurin: direct observation of thermodynamic and kinetic heterogeneity. Angew Chem Int Ed 49: 5776-5779.
  159. SASSOLAS A, BLUM LJ AND LECA-BOUVIER BD. 2012. Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30: 489-511.
  160. SEZER M, FRIELINGSDORF S, MILLO D, HEIDARY N, UTESCH T, MROGINSKI MA, FRIEDRICH B, HILDEBRANDT P, ZEBGER I AND WEIDINGER IM. 2011. Role of the HoxZ Subunit in the Electron Transfer Pathway of the Membrane-Bound [NiFe]-Hydrogenase from Ralstonia eutropha Immobilized on Electrodes. J Phys Chem B 115: 10368-10374.
  161. SHAKED Z AND WHITESIDES GM. 1980. Enzyme- catalyzed organic synthesis: NADH regeneration by using formate dehydrogenase. J Am Chem Soc 102: 7104-7105.
  162. SHAN CS, YANG HF, SONG JF, HAN DX, IVASKA A AND NIU L. 2009. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81: 2378-2382.
  163. SHELDON RA. 2007. Enzyme immobilization: The quest for optimum performance. Adv Synth Catal 349: 1289-1307.
  164. SHLEEV S, JAROSZ-WILKOLAZKA A, KHALUNINA A, MOROZOVA O, YAROPOLOV A, RUZGAS T AND GORTON L. 2005a. Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 67: 115-124.
  165. SHLEEV S, TKAC J, CHRISTENSON A, RUZGAS T, YAROPOLOV AI, WHITTAKER JW AND GORTON L. 2005b. Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20: 2517- 2554.
  166. SILVEIRA CM, QUINTAS PO, MOURA I, MOURA JJG, HILDEBRANDT P, ALMEIDA MG AND TODOROVIC S. 2015. SERR spectroelectrochemical study of cytochrome cd 1 nitrite reductase co-immobilized with physiological redox partner cytochrome c 552 on biocompatible metal electrodes. PLoS ONE 10: e0129940.
  167. SIQUEIRA JR, CASELI L, CRESPILHO FN, ZUCOLOTTO V AND OLIVEIRA ON. 2010. Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25: 1254-1263.
  168. SUCHETA A, CAMMACK R, WEINER J AND ARMSTRONG FA. 1993. Reversible voltammetry of fumarate reductase immobilized on an electrode surface. Biochemistry 32: 5455-5465.
  169. SZCZUPAK A, HALAMEK J, HALAMKOVA L, BOCHAROVA V, ALFONTA L AND KATZ E. 2012. Living battery -biofuel cells operating in vivo in clams. Energy Environ Sci 5: 8891-8895.
  170. TARASEVICH MR. 1985. Bioelectrocatalysis. In: Srinivasan SC, Yu A, Chizmadzhev YA, Bockris JOM, Conway BE and Yeager E (Eds), Comprehensive treatise of electrochemistry. New York: Plenum Press, 788 p. TARASEVICH MR, YAROPOLOV AI, BOGDANOVSKAYA VA AND VARFOLOMEEV SD. 1979. Electrocatalysis of a cathodic oxygen reduction by laccase. Bioelectrochem Bioenerg 6: 393-403.
  171. TERSOFF J AND FALICOV LM. 1981. Electronic structure and local atomic configurations of flat and stepped (111) surfaces of Ni and Cu. Phys Chem B 24: 754-764.
  172. TURNER APF. 2013. Biosensors: sense and sensibility. Chem Soc Rev 42: 3184-3196.
  173. WALSH C. 1980. Flavin coenzymes: at the crossroads of biological redox chemistry. Acc Chem Res 13: 148-155.
  174. WALZ D, TEISSIÉ J AND MILAZZO G. 2004. Bioelectrochemistry of membranes. New York: Springer, 240 p.
  175. WANG G, XU JJ AND CHEN HY. 2002a. Interfacing cytochrome c to electrodes with a DNA -carbon nanotube composite film. Electrochem Commun 4: 506-509.
  176. WANG J. 2008. Electrochemical glucose biosensors. Chem Rev 108: 814-825.
  177. WANG JX, LI MX, SHI ZJ, LI NQ AND GU ZN. 2002b. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem 74: 1993-1997.
  178. WANG W, NEMA S AND TEAGARDEN D. 2010. Protein aggregation -pathways and influencing factors. Int J Pharm 390: 89-99.
  179. WILLNER B, KATZ E AND WILLNER I. 2006. Electrical contacting of redox proteins by nanotechnological means. Curr Opin Biotechnol 17: 589-596.
  180. WILLNER I. 2002. Biomaterials for sensors, fuel cells, and circuitry. Science 298: 2407-2408.
  181. WILLNER I, WILLNER B AND KATZ E. 2007. Biomolecule- nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 70: 2-11.
  182. WILSON R AND TURNER APF. 1992. Glucose oxidase: an ideal enzyme. Biosen Bioelectron 7: 165-185.
  183. WU SP, BELLEI M, MANSY SS, BATTISTUZZI G, SOLA M AND COWAN JA. 2011. Redox chemistry of the Schizosaccharomyces pombe ferredoxin electron-transfer domain and influence of Cys to Ser substitutions. J Inorg Chem 105: 806-811.
  184. XIAO Y, PATOLSKY F, KATZ E, HAINFELD JF AND WILLNER I. 2003. "Plugging into enzymes": Nanowiring of redox enzymes by a gold nanoparticle. Science 299: 1877-1881.
  185. YAHIRO AT, LEE SM AND KIMBLE DO. 1964. Bioelectrochemistry. I. Enzyme utilizing biofuel cell studies. Biochim Biophys Acta 88: 375-383.
  186. YAROPOLOV AI, MALOVIK V, VARFOLOMEEV SD AND BEREZIN IV. 1979. Electroreduction of hydrogen peroxide on an electrode with immobilized peroxidase. Dokl Akad Nauk 249: 1399-1401.
  187. YEH P AND KUWANA T. 1977. Reversible electrode-reaction of cytochrome-C. Chem Lett 1145-1148.
  188. ZEBDA A ET AL. 2013. Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep 3: 1516.
  189. ZHANG Y, HE PL AND HU NF. 2004. Horseradish peroxidase immobilized in TiO 2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim Acta 49: 1981-1988.
  190. ZHANG YB, TAN YW, STORMER HL AND KIM P. 2005. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438: 201-204.
  191. ZHAO HY, ZHENG W, MENG ZX, ZHOU HM, XU XX, LI Z AND ZHENG YF. 2009. Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosens Bioelectron 24: 2352-2357.
  192. ZHAO JG, HENKENS RW, STONEHUERNER J, ODALY JP AND CRUMBLISS AL. 1992. Direct electron-transfer at horseradish peroxidase -colloidal gold modified electrodes. J Electroanal Chem 327: 109-119.
  193. ZHAO S, ZHANG K, BAI Y, YANG W AND SUN C. 2006. Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis. Bioelectrochemistry 69: 158- 163. ZHAO YD, ZHANG WD, CHEN H AND LUO QM. 2002. Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode. Anal Sci 18: 939-941.
  194. ZOUNGRANA T, FINDENEGG GH AND NORDE W. 1997. Structure, stability, and activity of adsorbed enzymes. J Colloid Interface Sci 190: 437-448.
  195. ZWOLINSKI BJ, MARCUS RJ AND EYRING H. 1955. Inorganic oxidation-reduction reactions in solution - electron transfers. Chem Rev 55: 157-180.