Academia.eduAcademia.edu

Outline

On the Existence of Non-Norm-Attaining Operators

2021, Journal of the Institute of Mathematics of Jussieu

https://doi.org/10.1017/S1474748021000311

Abstract

In this article, we provide necessary and sufficient conditions for the existence of non-norm-attaining operators in $\mathcal {L}(E, F)$ . By using a theorem due to Pfitzner on James boundaries, we show that if there exists a relatively compact set K of $\mathcal {L}(E, F)$ (in the weak operator topology) such that $0$ is an element of its closure (in the weak operator topology) but it is not in its norm-closed convex hull, then we can guarantee the existence of an operator that does not attain its norm. This allows us to provide the following generalisation of results due to Holub and Mujica. If E is a reflexive space, F is an arbitrary Banach space and the pair $(E, F)$ has the (pointwise-)bounded compact approximation property, then the following are equivalent: (i) $\mathcal {K}(E, F) = \mathcal {L}(E, F)$ ; (ii) Every operator from E into F attains its norm; (iii) $(\mathcal {L}(E,F), \tau _c)^* = (\mathcal {L}(E, F), \left \Vert \cdot \right \Vert )^*$ , where $\tau _c$ denot...

References (30)

  1. F. Albiac and N. Kalton, Topics in Banach Space Theory (second edition), Graduate Texts in Mathematics 233, Springer, New York, 2016.
  2. D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-44.
  3. E. Bonde, The approximation property for a pair of Banach spaces, Math. Scan., 57 (1985), 375- 385.
  4. P.G. Casazza, Approximation Properties, Handbook of the geometry of Banach spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss, eds, Elsevier, Amsterdam (2001), 271-316.
  5. C. Cho and W.B. Johnson, A characterization of subspaces X of p for which K(X) is an M -ideal in L(X), Proc. Amer. Math. Soc. 93, No. 3 (1985), 466-470
  6. W.J. Davis, T. Figiel, W.B. Johnson, and A. Pe lczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
  7. A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland, Mathematics Studies, Elsevier, 1993.
  8. P.N. Dowling, D. Freeman, C.J. Lennard, E. Odell, B. Randrianantoanina, B. Turett, A weak Grothendieck compactness principle, J. Funct. Anal. 263 (2012), 1378-1381.
  9. N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Pure and Applied Mathematics, a Series of Texts and Monographs, Volume II, Wiley Classics Library, 1988.
  10. M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer New York, 2010.
  11. M. Feder and P. Saphar , Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 239-247.
  12. N. Grønboek and G. A. Willis, Approximate identities in Banach algebras of compact operators, Canad. Math. Bull. 36 (1993), 45-53.
  13. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955).
  14. A.J. Guirao, V. Montesinos, and V. Zizler, Open Problems in the Geometry and Analysis of Banach Spaces, Springer 2016.
  15. J.R. Holub, Reflexivity of L(E, F ), Proc. Amer. Math. Soc. 39 (1973), 175-77.
  16. R.C. James, Reflexivity and the supremum of linear functionals, Ann. of Math. 66 (1957), 159-169.
  17. R.C. James, Reflexivity and the sup of linear functionals, Israel J. Math. 13 (1972), 289-300.
  18. W.B. Johnson, R. Lillemets, and E. Oja, Representing completely continuous operators through weakly ∞-compact operators, Bull. London Math. Soc. 48 (2016), 452-456.
  19. V.A. Khatskevich, M.I. Ostrovskii, and V.S. Shulman, Extremal Problems for Operators in Banach Spaces Arising in the Study of Linear Operator Pencils, Integr. Equ. Oper. Theory 51 (2005), 109-119.
  20. A. Lima and E. Oja, Metric approximation properties and trace mappings, Math. Nachr. 280 (2007), 571-580.
  21. J. Lindenstrauss and L. Tzafriri, Clasical Banach Spaces I, Sequence Spaces, Springer-Verlag, Berlin, 1977.
  22. J. Lindenstrauss and L. Tzafriri Classical Banach spaces II, Function Spaces, Springer-Verlag, Berlin/Heidelberg/New York, 1979.
  23. V.K. Maslyuchenko and A.M. Plichko, Some open problems on Functional Analysis and Func- tion Theory, Extracta Math. 20 (2005), 51-70.
  24. J. Mujica, Reflexive Spaces of Homogeneous Polynomials, Bulletin Polish Acad. Sci. Math. 49 (2001), 211-222.
  25. E. Oja, Lifting bounded approximation properties from Banach spaces to their dual spaces, J. Math. Anal. Appl. 323 (2006), 666-679.
  26. H. Pfitzner, Boundaries for Banach spaces determine weak compactness, Invent. math. 182 (2010), 585-604.
  27. A. Pietsch, Operator Ideals, Deutsch. Verlag Wiss., Berlin, 1978; North-Holland Publishing Com- pany, Amsterdam-New York-Oxford, 1980.
  28. O. I. Reinov, How bad can a Banach space with the approximation property be?, Mat. Zametki 33 (1983), 833-846 (in Russian); English translation in Math. Notes 33 (1983), 427-434.
  29. W. Ruckle, Reflexivity of L(E, F ), Proc. Amer. Math. Soc. 34 (1972), 171-174.
  30. D.P. Sinha, A.K. Karn, Compact operators whose adjoints factor through subspaces of p , Studia Math. 150 (2002), 17-33.