Cloud Ice Properties: In Situ Measurement Challenges
2017, Meteorological Monographs
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1Abstract
Understanding the formation and evolution of ice in clouds requires detailed information on the size, shape, mass, and optical properties of individual cloud hydrometeors and their bulk properties over a broad range of atmospheric conditions. Since the 1960s, instrumentation and research aircraft have evolved, providing increasingly more accurate and larger quantities of data about cloud particle properties. In this chapter, the current status of electrical powered, in situ measurement systems are reviewed with respect to their strengths and weaknesses and their limitations and uncertainties are documented. There remain many outstanding challenges. These are summarized and accompanied by recommendations for moving forward through new developments that fill the remaining information gaps. Closing these gaps will remove the obstacles that continue to hinder our understanding of cloud processes in general and the evolution of ice in particular.
References (110)
- Abel, S. J., R. J Cotton, P. A. Barrett, and A. K. Vance, 2014: A comparison of ice water content measurement techniques on the FAAM BAe-146 aircraft. Atmos. Meas. Tech., 7, 3007- 3022, doi:10.5194/amt-7-3007-2014.
- Abdelmonem, A., M. Schnaiter, P. Amsler, E. Hesse, J. Meyer, and T. Leisner, 2011: First correlated measurements of the shape and light scattering properties of cloud particles using the novel Particle Habit Imaging and Polar Scattering (PHIPS) probe. Atmos. Meas. Tech., 4, 2125-2142, doi:10.5194/ amt-4-2125-2011.
- --, E. Järvinen, D. Duft, E. Hirst, S. Vogt, T. Leisner, and M. Schnaiter, 2016: PHIPS-HALO: The airborne Particle Habit Imaging and Polar Scattering probe. Part I: Design and operation. Atmos. Meas. Tech., 9, 3131-3144, doi:10.5194/ amt-9-3131-2016.
- Bachalo, W. D., 1980: A method for measuring the size and velocity of spheres by dual beam light scatter interferometry. Appl. Opt., 19, 363-370, doi:10.1364/AO.19.000363.
- --, J. W. Strapp, E. Biagio, A. Korolev, and M. Wolde, 2015: Performance of the newly developed High Speed Imaging (HSI) probe for measurements of size and concentration of ice crystals and identification of phase composition of clouds. Extended Abstracts, SAE 2015 Int. Conf. on Icing of Aircraft, Engines, and Structures, Prague, Czech Republic, SAE, 1-4.
- Baker, B., Q. Mo, R. P. Lawson, D. O'Connor, and A. Korolev, 2009: The effects of precipitation on cloud droplet measure- ment devices. J. Atmos. Oceanic Technol., 26, 1404-1409, doi:10.1175/2009JTECHA1191.1.
- Baumgardner, D., and B. Huebert, 1993: The airborne aerosol inlet workshop: Meeting report. J. Aerosol Sci., 24, 835-846, doi:10.1016/0021-8502(93)90050-J.
- --, and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 1224-1229, doi:10.1175/1520-0426(1997)014,1224:ACFOAP.2.0.CO;2.
- --, J. W. Strapp, and J. E. Dye, 1985: Evaluation of the for- ward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Oceanic Tech- nol., 2, 626-632, doi:10.1175/1520-0426(1985)002,0626: EOTFSS.2.0.CO;2.
- --, H. Jonsson, W. Dawson, D. O'Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer (CAPS): A new instrument for cloud investigations. Atmos. Res., 59-60, 251-264, doi:10.1016/S0169-8095(01)00119-3.
- --, and Coauthors, 2011a: Airborne instruments to measure at- mospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology. Atmos. Res., 101, 10-29, doi:10.1016/j.atmosres.2011.06.021.
- --, and Coauthors, 2011b: In situ, airborne instrumentation: Addressing and solving measurement problems in ice clouds. Bull. Amer. Meteor. Soc., 93, 29-34, doi:10.1175/ BAMS-D-11-00123.1.
- --, R. Newton, M. Krämer, J. Meyer, A. Beyer, M. Wendisch, and P. Vochezer, 2014: The Cloud Particle Spectrometer with Polarization Detection (CPSPD): A next generation open- path cloud probe for distinguishing liquid cloud droplets from ice crystals. Atmos. Res., 142, 2-14, doi:10.1016/ j.atmosres.2013.12.010.
- Beswick, K., D. Baumgardner, M. Gallagher, A. Volz-Thomas, P. Nedelec, K. Y. Wang, and S. Lance, 2014: The backscatter cloud probe-A compact low-profile autonomous optical spectrometer. Atmos. Meas. Tech., 7, 1443-1457, doi:10.5194/ amt-7-1443-2014.
- Biter, C. J., J. E. Dye, D. Huffman, and W. D. King, 1987: The drop response of the CSIRO liquid water content. J. Atmos. Oceanic Technol., 4, 359-367, doi:10.1175/1520-0426(1987)004,0359: TDSROT.2.0.CO;2.
- Borrmann, S., L. Beiping, and M. Mishchenko, 2000: Application of the T-matrix method to the measurement of aspherical (ellipsoidal) particles with forward scattering optical par- ticle counters. J. Aerosol Sci., 31, 789-799, doi:10.1016/ S0021-8502(99)00563-7.
- Clarke, A. J. M., E. Hesse, Z. Ulanowski, and P. H. Kaye, 2006: A 3D implementation of ray tracing combined with diffraction on facets. J. Quant. Spectrosc. Radiat. Transfer, 100, 103-114, doi:10.1016/j.jqsrt.2005.11.028.
- Cober, S., G. A. Isaacs, A. V. Korolev, and W. J. Strapp, 2001: As- sessing cloud phase conditions. J. Appl. Meteor., 40, 1967-1983, doi:10.1175/1520-0450(2001)040,1967:ACPC.2.0.CO;2.
- Connolly, P. J., M. J. Flynn, Z. Ulanowski, T. W. Choularton, M. W. Gallagher, and K. N. Bower, 2007: Calibration of 2-D imaging probes using calibration beads and ice crystal ana- logues. J. Atmos. Oceanic Technol., 24, 1860-1879, doi:10.1175/ JTECH2096.1.
- Cooper, W. A., 1988: Effects of coincidence on measurements with a forward scattering spectrometer probe. J. Atmos. Oceanic Technol., 5, 823-832, doi:10.1175/1520-0426(1988)005,0823: EOCOMW.2.0.CO;2.
- Cotton, R., S. Osborne, Z. Ulanowski, E. Hirst, P. H. Kaye, and R. S. Greenaway, 2010: The ability of the Small Ice Detector (SID2) to characterize cloud particle and aerosol morphol- ogies obtained during flights of the FAAM BAe146 research aircraft. J. Atmos. Oceanic Technol., 27, 290-303, doi:10.1175/ 2009JTECHA1282.1.
- --, and Coauthors, 2013: The effective density of small ice par- ticles obtained from in situ aircraft observations of mid- latitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 1923-1934, doi:10.1002/qj.2058.
- Davis, S. M., A. G. Hallar, and L. M. Avallone, 2007: Measurement of total water with a tunable diode laser hygrometer: Inlet analysis, calibration procedure, and ice water content determination. J. Atmos. Oceanic Technol., 24, 463-475, doi:10.1175/JTECH1975.1.
- Davison, C. R., J. D. MacLeod, and J. W. Strapp, 2009: Naturally aspirating isokinetic total water content probe: Evaporator design and testing. First AIAA Atmospheric and Space Envi- ronments Conf., San Antonio, TX, AIAA, AIAA-2009-3861.
- Available online at https://arc.aiaa.org/doi/pdf/10.2514/ 6.2009-3861.]
- --, T. P. Ratvasky, and L. E. Lilie, 2011: Naturally aspirating isokinetic total water content probe: Wind tunnel test results and design modifications. SAE Tech. Paper 2011-38-0036, 14 pp., doi:10.4271/2011-38-0036.
- Emery, E., D. R. Miller, S. R. Plaskon, J. W. Strapp, and L. Lillie, 2004: Ice particle impact on cloud water content in- strumentation. NASA Tech. Note, NASA/TM-2004-212964, 12 pp.
- Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle inter- arrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249-261, doi:10.1175/1520-0426(2003)020,0249: IPITMW.2.0.CO;2.
- --, A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 1357-1370, doi:10.1175/JTECH1922.1.
- Fugal, J., and R. Shaw, 2009: Cloud particle size distributions measured with an airborne digital in-line holographic in- strument. Atmos. Meas. Tech., 2, 259-271, doi:10.5194/ amt-2-259-2009.
- Gardiner, B. A., and J. Hallett, 1985: Degradation of in-cloud for- ward scattering spectrometer probe measurements in the pres- ence of ice particles. J. Atmos. Oceanic Technol., 2, 171-180, doi:10.1175/1520-0426(1985)002,0171:DOICFS.2.0.CO;2.
- Gayet, J.-F., G. Febvre, and H. Larsen, 1996: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol., 13, 1300-1310, doi:10.1175/1520-0426(1996)013,1300: TROTPF.2.0.CO;2.
- --, O. Crepel, J. Fournol, and S. Oshchepkov, 1997: A new air- borne polar nephelometer for the measurements of optical and microphysical cloud properties. Part 1: Theoretical design. Ann. Geophys., 15, 451-459, doi:10.1007/s00585-997-0451-1.
- --, and Coauthors, 2002: Quantitative measurements of the microphysical and optical properties of cirrus clouds with four different in situ probes: Evidence of small ice crystals. Geo- phys. Res. Lett., 29, 2230, doi:10.1029/2001GL014342.
- Gerber, H., B. Arends, and A. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235-252, doi:10.1016/ 0169-8095(94)90001-9.
- --, C. H. Twohy, B. Gandrud, A. Heymsfield, G. McFarquhar, P. Demott, and D. Rogers, 1998: Measurements of wave-cloud microphysical properties made with two new aircraft cloud probes. Geophys. Res. Lett., 25, 1117-1120, doi:10.1029/97GL03310.
- --, Y. Takano, T. J. Garrett, and P. V. Hobbs, 2000: Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds. J. Atmos. Sci., 57, 3021-3034, doi:10.1175/1520-0469(2000)057,3021: NMOTAP.2.0.CO;2.
- Glen, A., and S. D. Brooks, 2013: A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud and Aerosol Spectrometer with Polarization (CASPOL). Atmos. Chem. Phys., 13, 1345-1356, doi:10.5194/ acp-13-1345-2013.
- Hallett, J., 2003: Measurement in the atmosphere. Handbook of Weather, Climate and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements, T. D. Potter and B. R. Colman, Eds., Wiley-Interscience, 711-720.
- Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34, L23812, doi:10.1029/ 2007GL030951.
- --, and G. M. McFarquhar, 1996: High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53, 2424-2451, doi:10.1175/1520-0469(1996)053,2424: HAOCIT.2.0.CO;2.
- --, and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Me- teor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0010.1.
- Hirst, E., P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, 2001: Discrimination of micrometre-sized ice and super-cooled droplets in mixed-phase cloud. Atmos. Environ., 35, 33-47, doi:10.1016/S1352-2310(00)00377-0.
- Hovenac, E. A., and E. D. Hirleman, 1991: Use of rotating pinholes and reticles for calibration of cloud droplet instrumenta- tion. J. Atmos. Oceanic Technol., 8, 166-171, doi:10.1175/ 1520-0426(1991)008,0166:UORPAR.2.0.CO;2.
- Jackson, R. C., G. M. McFarquhar, J. Stith, M. Beals, R. A. Shaw, J. Jensen, J. Fugal, and A. Korolev, 2014: An assessment of the impact of antishattering tips and artifice removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 2567-2590, doi:10.1175/ JTECH-D-13-00239.1.
- Järvinen, E., and Coauthors, 2016: Quasispherical ice in convec- tive clouds. J. Atmos. Sci., 73, 3885-3910, doi:10.1175/ JAS-D-15-0365.1.
- Jensen, J., and H. Granek, 2002: Optoelectronic simulation of the PMS 260X optical array probe and application to drizzle in a marine stratocumulus. J. Atmos. Oceanic Technol., 19, 568-585, doi:10.1175/1520-0426(2002)019,0568:OSOTPO.2.0.CO;2.
- Johnson, A., S. Lasher-Trapp, A. Bansemer, Z. Ulanowski, and A. J. Heymsfield, 2014: Difficulties in early ice detection with the Small Ice Detector-2 HIAPER (SID-2H) in maritime cu- muli. J. Atmos. Oceanic Technol., 31, 1263-1275, doi:10.1175/ JTECH-D-13-00079.1.
- Kaye, P. H., and Coauthors, 2008: Classifying atmospheric ice crystals by spatial light scattering. Opt. Lett., 33, 1545-1547, doi:10.1364/OL.33.001545.
- King, W. D., 1984: Air flow and particle trajectories around aircraft fuselages. I: Theory. J. Atmos. Oceanic Technol., 1, 5-13, doi:10.1175/1520-0426(1984)001,0005:AFAPTA.2.0.CO;2.
- --, D. A. Parkin, and R. J. Handsworth, 1978: A hot-wired liquid water device having fully calculable response charac- teristics. J. Appl. Meteor., 17, 1809-1813, doi:10.1175/ 1520-0450(1978)017,1809:AHWLWD.2.0.CO;2.
- --, D. E. Turvey, D. Williams, and D. J. Llewellyn, 1984: Air flow and particle trajectories around aircraft fuselages. II: Mea- surements. J. Atmos. Oceanic Technol., 1, 14-21, doi:10.1175/ 1520-0426(1984)001,0014:AFAPTA.2.0.CO;2.
- Knollenberg, R., 1970: The optical array: An alternative to scat- tering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86-103, doi:10.1175/1520-0450(1970)009,0086: TOAAAT.2.0.CO;2.
- --, 1976: Three new instruments for cloud physics measure- ments: The 2-D spectrometer probe, the forward scattering spectrometer probe, and the active scattering aerosol spec- trometer. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 554-561.
- --, 1981: Techniques for probing cloud microstructure. Clouds, Their Formation, Optical Properties and Effects, P. V. Hobbs and A. Deepak, Eds., Academic Press, 15-91.
- Korolev, A. V., 2007: Reconstruction of the sizes of spheri- cal particles from their shadow images. Part I: Theoretical CHAPTER 9 B A U M G A R D N E R E T A L .
- 9.21 considerations. J. Atmos. Oceanic Technol., 24, 376-389, doi:10.1175/JTECH1980.1.
- --, and B. Sussman, 2000: A technique for habit classification of cloud particles. J. Atmos. Oceanic Technol., 17, 1048-1057, doi:10.1175/1520-0426(2000)017,1048:ATFHCO.2.0.CO;2.
- --, and G. A. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528-542, doi:10.1175/JTECH1720.1.
- --, and P. R. Field, 2015: Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probe measurements. Atmos. Meas. Tech., 8, 761-777, doi:10.5194/amt-8-761-2015.
- --, S. V. Kuznetsov, Y. E. Makarov, and V. S. Novikov, 1991: Evaluation of measurements of particle size and sample area from optical array probes. J. Atmos. Oceanic Technol., 8, 514-522, doi:10.1175/1520-0426(1991)008,0514:EOMOPS.2.0.CO;2.
- --, J. W. Strapp, and G. A. Isaac, 1998a: Evaluation of the ac- curacy of PMS Optical Array Probes. J. Atmos. Oceanic Technol., 15, 708-720, doi:10.1175/1520-0426(1998)015,0708: EOTAOP.2.0.CO;2.
- --, --, --, and A. N. Nevzorov, 1998b: The Nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and perfor- mance characteristics. J. Atmos. Oceanic Technol., 15, 1495-1510, doi:10.1175/1520-0426(1998)015,1495:TNAHWL.2.0.CO;2.
- --, E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tro- pospheric clouds: Fact or artifact? Airborne Icing In- strumentation Evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967-973, doi:10.1175/2010BAMS3141.1.
- --, --, --, --, and --, 2013a: Quantification of the ef- fects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 2527-2553, doi:10.1175/ JTECH-D-13-00115.1.
- --, J. A. Strapp, G. A. Isaac, and E. Emery, 2013b: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 2121-2131, doi:10.1175/JTECH-D-13-00007.1.
- --, A. Shavkov, and H. Barker, 2014: Calibration and perfor- mance of the cloud extinction probe. J. Atmos. Oceanic Technol., 31, 326-345, doi:10.1175/JTECH-D-13-00020.1.
- Krämer, M., and A. Afchine, 2004: Sampling characteristics of in- lets operated at low U/U0 ratios: New insights from compu- tational fluid dynamics (CFX) modeling. J. Aerosol Sci., 35, 683-694, doi:10.1016/j.jaerosci.2003.11.011.
- --, and Coauthors, 2016: A microphysics guide to cirrus clouds- Part 1: Cirrus types. Atmos. Chem. Phys., 16, 3463-3483, doi:10.5194/acp-16-3463-2016.
- Lance, S., 2012: Coincidence errors in a cloud droplet probe (CDP) and a cloud and aerosol spectrometer (CAS), and the im- proved performance of a modified CDP. J. Atmos. Oceanic Technol., 29, 1532-1541, doi:10.1175/JTECH-D-11-00208.1.
- --, C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the cloud droplet probe (CDP) and in- flight performance in liquid, ice and mixed-phase clouds dur- ing ARCPAC. Atmos. Meas. Tech., 3, 1683-1706, doi:10.5194/ amt-3-1683-2010.
- Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 1361-1381, doi:10.5194/ amt-4-1361-2011.
- --, R. E. Stewart, and L. J. Angus, 1998: Observations and nu- merical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55, 3209-3229, doi:10.1175/ 1520-0469(1998)055,3209:OANSOT.2.0.CO;2.
- --, B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds ob- served in May and July during FIRE ACE. J. Geophys. Res., 106, 14 989-15 014, doi:10.1029/2000JD900789.
- --, D. O'Connor, P. Zmarzly, K. Weaver, B. A. Baker, Q. Mo, and H. Jonsson, 2006: The 2DS (stereo) probe: Design and preliminary tests of a new airborne, high speed, high- resolution particle imaging probe. J. Atmos. Oceanic Tech- nol., 23, 1462-1471, doi:10.1175/JTECH1927.1.
- --, S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 2429-2445, doi:10.1175/JAS-D-14-0274.1.
- Luebke, A. E., L. M. Avallone, C. Schiller, J. Meyer, C. Rolf, and M. Krämer, 2013: Ice water content of Arctic, midlatitude, and tropical cirrus-Part 2: Extension of the database and new statistical analysis. Atmos. Chem. Phys., 13, 6447-6459, doi:10.5194/acp-13-6447-2013.
- McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool In- ternational Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.
- --, --, and R. C. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 1277-1293, doi:10.1175/JAMC-D-12-0114.1.
- --, and Coauthors, 2017: Data analysis, interpretation, and pre- sentation of in situ measurements. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Chal- lenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0007.1.
- Meyer, J., 2012: Ice Crystal Measurements with the New Particle Spectrometer NIXE-CAPS. Energy and Environment Series, Vol. 160, Jülich Research Centre, 132 pp.
- --, and Coauthors, 2015: Two decades of water vapor mea- surements with the FISH fluorescence hygrometer: A re- view. Atmos. Chem. Phys., 15, 8521-8538, doi:10.5194/ acp-15-8521-2015.
- Nicholls, S., J. Leighton, and R. Barker, 1990: A new fast response instrument for measuring total water content from aircraft. J. Atmos. Oceanic Technol., 7, 706-718, doi:10.1175/ 1520-0426(1990)007,0706:ANFRIF.2.0.CO;2.
- Noone, K. J., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol., 8, 235-244, doi:10.1080/ 02786828808959186.
- Norment, H., 1985: Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow. NASA Tech. Rep. NASA-CR-3935, 168 pp. [Available online at https://ntrs.nasa.gov/archive/ nasa/casi.ntrs.nasa.gov/19870002261.pdf.]
- --, 1988: Three-dimensional trajectory analysis of two drop sizing instruments: PMS-OAP and PMS-FSSP. J. Atmos. Oceanic Technol., 5, 743-756, doi:10.1175/1520-0426(1988)005,0743: TDTAOT.2.0.CO;2.
- Porcheron, E., P. Lemaitre, J. Van Beeck, R. Vetrano, M. Brunel, and G. Grehan, 2015: Development of a spectrometer for airborne measurement of droplet sizes in clouds. J. Eur. Opt. Soc. Rapid Publ., 10, 15030, doi:10.2971/jeos.2015.15030.
- Schiller, C., M. Krämer, A. Afchine, N. Spelten, and N. Sitnikov, 2008: Ice water content of Arctic, midlatitude, and tropical cirrus. J. Geophys. Res., 113, D24208, doi:10.1029/ 2008JD010342.
- Schnaiter, M., and Coauthors, 2016: Cloud chamber experiments on the origin of ice crystal surface roughness in cirrus clouds. Atmos. Chem. Phys., 16, 5091-5110, doi:10.5194/ acp-16-5091-2016.
- Schön, R., and Coauthors, 2011: Particle habit imaging using in- coherent light: A first step toward a novel instrument for cloud microphysics. J. Atmos. Oceanic Technol., 28, 493-512, doi:10.1175/2011JTECHA1445.1.
- Schwarzenboeck, A., G. Mioche, A. Armetta, A. Herber, and J.-F. Gayet, 2009: Response of the Nevzorov hot wire probe in clouds dominated by droplet conditions in the drizzle size range. Atmos. Meas. Tech., 2, 779-788, doi:10.5194/ amt-2-779-2009.
- Ström, J., and J. Heintzenberg, 1994: Water vapor, condensed water, and crystal concentration in orographically influenced cirrus clouds. J. Atmos. Sci., 51, 2368-2383, doi:10.1175/ 1520-0469(1994)051,2368:WVCWAC.2.0.CO;2.
- Twohy, C. H., and D. Rogers, 1993: Airflow and water drop trajectories at instrument sampling points around the Beechcraft King Air and Lockheed Electra. J. Atmos. Oceanic Technol., 10, 566-578, doi:10.1175/1520-0426(1993)010,0566: AAWDTA.2.0.CO;2.
- --, A. J. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14, 197-202, doi:10.1175/1520-0426(1997)014,0197: MOCWCI.2.0.CO;2.
- --, J. W. Strapp, and M. Wendisch, 2003: Performance of a counterflow virtual impactor in the NASA Icing Research Tunnel. J. Atmos. Oceanic Technol., 20, 781-790, doi:10.1175/ 1520-0426(2003)020,0781:POACVI.2.0.CO;2.
- Ulanowski, Z., and M. Schnaiter, 2011: UV and visible light scat- tering and absorption measurements on aerosols in the laboratory. Fundamentals and Applications of Aerosol Spec- troscopy, J. P. Reid and R. Signorell, Eds., CRC Press, 243- 268.
- --, P. Connolly, M. Flynn, M. Gallagher, A. J. M. Clarke, and E. Hesse, 2004: Using ice crystal analogues to validate cloud ice parameter retrievals from the CPI ice spectrometer. Proc. 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, ICCP, 1175-1178.
- --, E. Hesse, P. Kaye, and A. J. Baran, 2006: Light scattering by complex ice-analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382-392, doi:10.1016/j.jqsrt.2005.11.052.
- --, E. Hirst, P. H. Kaye, and R. Greenaway, 2012: Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns. J. Quant. Spectrosc. Ra- diat. Transfer, 113, 2457-2464, doi:10.1016/j.jqsrt.2012.06.019.
- --, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular at- mospheric ice particles from Small Ice Detector 3 measure- ments. Atmos. Chem. Phys., 14, 1649-1662, doi:10.5194/ acp-14-1649-2014.
- Um, J., and G. M. McFarquhar, 2015: Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: Impacts of aspect ratio and ice crystal size. J. Quant. Spectrosc. Radiat. Transfer, 165, 134-152, doi:10.1016/j.jqsrt.2015.07.001.
- Vidaurre, G., and J. Hallett, 2009: Particle impact and breakup in aircraft measurements. J. Atmos. Oceanic Technol., 26, 972- 983, doi:10.1175/2008JTECHA1147.1.
- Vochezer, P., E. Järvinen, R. Wagner, P. Kupiszewski, T. Leisner, and M. Schnaiter, 2016: In situ characterization of mixed phase clouds using the Small Ice Detector and the Particle Phase Discriminator. Atmos. Meas. Tech., 9, 159-177, doi:10.5194/ amt-9-159-2016.
- Weinstock, E. M., and Coauthors, 2006: Measurements of the total water content of cirrus clouds. Part I: Instrument details and calibration. J. Atmos. Oceanic Technol., 23, 1397-1409, doi:10.1175/JTECH1928.1.
- Wendisch, M., and J. L. Brenguier, Eds., 2013: Airborne Mea- surements for Environmental Research: Methods and In- struments. Wiley and Sons, 641 pp.
- --, T. Garrett, and J. Strapp, 2002: Wind tunnel tests of the airborne PVM-100A response to large droplets. J. Atmos. Oceanic Technol., 19, 1577-1584, doi:10.1175/1520-0426(2002)019,1577: WTTOTA.2.0.CO;2.
- --, and Coauthors, 2004: Aircraft particle inlets: State-of-the-art and future needs. Bull. Amer. Meteor. Soc., 85, 89-91, doi:10.1175/BAMS-85-1-89.
- Wu, W., and G. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 1057-1072,doi:10.1175/JTECH-D-15-0177.1.
- Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223-248.
- --, L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scatter- ing, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 mm. J. Atmos. Sci., 70, 330-347, doi:10.1175/JAS-D-12-039.1. CHAPTER 9 B A U M G A R D N E R E T A L .