Academia.eduAcademia.edu

Outline

Mathematical Foundations of Computer Science 1981

1981

https://doi.org/10.1007/3-540-10856-4

Abstract

This volume contains papers which were contributed for presentation at the 10th Symposium on Mathematical Foundations of Computer Science-MFCS'81, held at ~trbsk4 Pleso, Czechoslovakia, from August 31-September 4, 1981. The symposium is the tenth in the series of annual international meetings which take place alternately in Poland and Czechoslovakia.

References (35)

  1. J. Ne~etgil Representations of graphs by means of products and their complexity .....................................
  2. A. Nijholt Parsing strategies: a concise survey ......................
  3. J. van Leeuwen and M. H. Overmars The art of dynamizing .....................................
  4. L. G. Valiant and S. Skyum Fast parallel computation of polynomials using few processors ................................................
  5. R. Valk Generalizations of Petri nets .............................
  6. COMMUNICATIONS H. Alt, K. Mehlhorn and J. I. Munro Partial match retrieval in implicit data structures .......
  7. H. Andr@ka, I. N@meti and I. Sain A characterization of Floyd-provable programs .............
  8. E, Astesiano and E. Zucca Semantics of CSP via translation into CCS .................
  9. VII H. D. Ehrich On realization and implementation ........................
  10. D. Yu. Grigor'ev Multiplicative complexity of a bilinear form over a com- mutative ring ............................................ 281 P. H~jek Making dynamic logic first-order .........................
  11. J. Hogej~ Partial interpretations of program schemata ..............
  12. J. Hromkovi6 Closure properties of the family of languages recognized by one-way two-head deterministic finite state automata ..
  13. L. Janiga Another hierarchy defined by multihead finite automata ...
  14. J. W. Jaromczyk An extension of Rabin's complete proof concept ...........
  15. K. Jensen How to find invariants for coloured Petri nets ...........
  16. H. Jung Relationships between probabilistic and deterministic tape complexity ...............................................
  17. Vlll J, Beauquier and J. Berstel More about the "geography '~ of context-free languages .....
  18. J. A. Bergstra, M. Broy, J. V. Tucker and M. Wirsing On the power of algebraic specifications .................
  19. A. Bertoni, M. Brambilla, G. Mauri and N. Sabadini An application of the theory of free partially commutative monoids: asymptotic densities of trace languages .........
  20. R. Book, M. Jantzen, B. Monien~ C. O'D~nlaing and C. Wrathall On the complexity of word problems in certain Thue systems ..................................................
  21. F. J. Brandenburg On the transformation of derivation graphs to derivation trees ....................................................
  22. A. Brandst~dt Pushdown automata with restricted use of storage symbols 234 L. A. Cherkasova and V. E. Kotov Structured nets ..........................................
  23. R. P. Daley
  24. Retraceability, repleteness and busy beaver sets .........
  25. W. Damm and I. Guessarian Combining T and level-N ..................................
  26. X F. Meyer auf der Heide Time-processor trade-offs for universal parallel computers ................................................
  27. J. Pittl Negative results on the size of deterministic right parsers ..................................................
  28. J. Pokorny Key-equivalence of functional dependency statements systems ..................................................
  29. J. Reiterman and V. Trnkov6
  30. On representation of dynamic algebras with reversion .....
  31. B. Rovan A framework for studying grammars ........................
  32. V. Yu. Sazanov On existence of complete predicate calculus in meta- mathematics without exponentiation .......................
  33. E. Soisalon-Soininen and D. Wood On structural similarity of context-free grammars ........
  34. S. Soko~owski Axioms for the term-wise correctness of programs .........
  35. L. St alger Complexrty and entropy ...................................