Academia.eduAcademia.edu

Outline

Possibly the oldest fish-made resting traces

2022, Ichnos

https://doi.org/10.1080/10420940.2022.2047039

Abstract

The Silurian Sharawra Member (middle to late Llandoverian) in Saudi Arabia exhibits unique surface traces with exceptional preservation: Seven small, wing-shaped traces occur on a sandstone slab showing well-defined hummocky cross-stratification having a few decimeters wavelength being covered by a thin mud layer. These traces are preserved as concave epirelief along with elongated internal striae and surrounded by slightly elevated levees. Preservation of these delicate, 10–20 mm long and ~10 mm wide traces suggests that they were formed after a storm event when mud had already settled to the sediment surface. The lack of wave-generated sedimentary structures implies deposition between fair-weather and storm-wave base probably preventing further rapid reworking by waves. Based on their geometry, internal pattern, and spatial distribution, these wing-shaped traces are interpreted to have been produced by relatively stationary bottom-feeding fish, morphologically similar to ancestors of Gobiidae, probably in the Actinopterygii class. The majority of fish-made trace fossils record feeding and locomotion behaviour, whereas the wing-shaped traces are interpreted to represent resting structures made by fish that pressed their fins downward on the muddy sediment surface and hence, represent undertracks. These traces are possibly the oldest fish-made structure documented thus far. These wing-shaped traces are described as Pisquiesichnus dashtgardi igen. et isp. nov. in this study.

References (62)

  1. Abbas, M. A., Kaminski, M. A., & Dogan, A. U. (2017). Source, tectonic setting, and facies distribution of the Silurian Sharawra Formation, the Old Qusaiba village, central Saudi Arabia. Journal of African Earth Sciences., 130, 48-59.
  2. Abel, O. (1935). Vorzeitliche Lebensspuren. Fischer. Able, K. W., Twichell, D. C., Grimes, C., & Jones, R. S. (1987). Tilefishes of the genus Caulolatilus construct bur- rows in the sea floor. Bulletin of Marine Science., 40, 1-10.
  3. Adrian-Kalchhauser, I., Blomberg, A., Larsson, T., Musilova, Z., Peart, C. R., Pippel, M., … Winkler, S. (2020). The round goby genome provides insights into mechanisms that may facilitate biological invasions. BMC Biology, 18(1), 11.
  4. Aigner, T., & Reineck, H.-E. (1982). Proximality trends in modern storm sands from the Helgoland Bight (North Sea) and their implications for basin analysis. Senckenbergiana maritima, 14, 183-215.
  5. Al-Laboun, A. A. (2009). Tectonostratigraphy of the exposed Silurian deposits in Arabia. Arabian Journal of Geosciences, 2(2), 119-131.
  6. Anderson, A. M. (1976). Fish trails from the early Permian of South Africa. Palaeontology, 19, 397-409.
  7. Ansari, A., Trivedi, S., Saggu, S., & Rehman, H. (2014). Mudskipper: A biological indicator for environmental monitoring and assessment of coastal waters. Journal of Entomology and Zoology Studies, 2, 22-33.
  8. Auster, P. J., Lindholm, J., Schaub, S., Funnell, G., Kaufman, L. S., & Valentine, P. C. (2003). Use of sand wave habitats by silver hake. Journal of Fish Biology, 62(1), 143-152.
  9. Benner, J. S., Ridge, J. C., & Taft, N. K. (2008). Late Pleistocene freshwater fish (Cottidae) trackways from New England (USA) glacial lakes and a reinterpretation of the ichnogenus Broomichnium Kuhn. Palaeogeography, Palaeoclimatology, Palaeoecology., 260(3-4), 375-388.
  10. Bhatt, N. Y., Patel, S. J., Patel, D. A., & Patel, H. P. (2009). Burrowing activities of goby fish in the recent intertidal mud flats along the Navinal coast, Kachchh, Western India. Journal of the Geological Society of India, 74(4), 515-530.
  11. Bieńkowska-Wasiluk, M., Uchman, A., Jurkowska, A., & Świerczewska-Gładysz, E. (2015). The trace fossil Lepidenteron lewesiensis: A taphonomic window on di- versity of Late Cretaceous fishes. Palaontologische zeitschrift, 89(4), 795-806.
  12. Bromley, R. G. (1996). Trace fossils: Biology, taphonomy and applications (2nd ed.). Chapman and Hall.
  13. Burrow, C. J., & Rudkin, D. (2014). Oldest near-complete Acanthodian: The first vertebrate from the Silurian Bertie Formation Konservat-Lagerstätte, Ontario. Plos One, 9(8), e104171.
  14. Carmona, N. B., Ponce, J. J., Wetzel, A., Bournod, C. N., & Cuadrado, D. G. (2012). Microbially induced sedimen- tary structures in Neogene tidal flats from Argentina: Paleoenvironmental, stratigraphic and taphonomic impli- cations. Palaeogeography, Palaeoclimatology, Palaeoecology., 353-355, 1-9.
  15. Choo, B., Zhu, M., Zhao, W., Jia, L., & Zhu, Y. A. (2014). The largest Silurian vertebrate and its palaeoecological implications. Scientific Reports, 4, 5242.
  16. Collinson, J. D., & Thomson, D. B. (1988). Sedimentary structures. Hyman and Allen.
  17. Cui, X., Qiao, T., & Zhu, M. (2019). Scale morphology and squamation pattern of Guiyu oneiros provide new insights into early osteichthyan body plan. Scientific Reports, 9(1), 4411.
  18. Demircan, H., & Uchman, A. (2010). Kiss of death of a hunting fish: Trace fossil Osculichnus labialis igen. et isp. nov. from late Eocene-early Oligocene prodelta sediments of the Mezardere Formation, Thrace Basin, NW Turkey. Acta Geologica Polonica, 60, 29-38.
  19. Droser, M. L., Jensen, S., & Gehling, J. G. (2002). Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: Implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12572- 12576.
  20. Feibel, C. S. (1987). Fossil fish nests from the Koobi Fora Formation (Plio-Pleistocene) of northern Kenya. Journal of Paleontology, 61(1), 130-134.
  21. Fox, C. H., Gibb, A. C., Summers, A. P., & Bemis, W. E. (2018). Benthic walking, bounding, and maneuvering in flatfishes (Pleuronectiformes: Pleuronectidae): New ver- tebrate gaits. Zoology (Jena, Germany), 130, 19-29.
  22. Frey, R. W., & Ring, R. G. (1992). Marine event beds and recolonization surfaces as revealed by trace fossil analy- sis. Geological Magazine, 129(3), 325-335.
  23. Gingras, M. K., Armitage, I. A., Pemberton, S. G., & Clifton, H. E. (2007). Pleistocene walrus herds in the Olympic peninsula area: Trace-fossil evidence of predation by hy- draulic jetting. PALAIOS, 22(5), 539-545.
  24. Goldring, R. (1995). Organisms and the substrate: Response and effect. In D. W. J. Bosence & P. A. Allison (Eds.), Marine palaeoenvironmental analysis from fossils (pp. 151-180). Geological Society London, Spec. Publ.
  25. Graham, J. B. (1997). The biology of air-breathing fishes. In J. B. Graham (Ed.), Air-breathing fishes (pp. 1-11). Academic Press.
  26. Gregory, M. R., Balance, P. F., Gibson, G. W., & Ayling, A. M. (1979). On how some rays (Elasmobranchia) excavate feeding depressions by jetting water. Journal of Sedimentary Research., 49, 1125-1129.
  27. Häntzschel, W., & Frey, R. W. (1979). Trace fossils. In R. W. Fairbridge & D. Jablonski (Eds.), Encyclopedia of pa- leontology (pp. 813-820). Dowden, Hutchinson & Ross, Stroudsburg.
  28. Herrel, A., Choi, H. F., Dumont, E., De Schepper, N., Vanhooydonck, B., Aerts, P., & Adriaens, D. (2011). Burrowing and subsurface locomotion in anguilliform fish: Behavioral specializations and mechanical con- straints. The Journal of Experimental Biology, 214(Pt 8), 1379-1385.
  29. Hughes, N. C., & Heim, N. A. (2005). Cambrian. In R. C. Selley, L. R. M. Cocks, & I. R. Plimer (Eds.), Encyclopedia of geology (pp. 163-175). Elsevier.
  30. Jensen, S., Droser, M. L., & Gehling, J. G. (2005). Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology., 220(1-2), 19-29.
  31. Jones, P. J., & Stump, T. E. (1999). Depositional and tec- tonic setting of the Lower Silurian hydrocarbon source rock facies, central Saudi Arabia. American Association of Petroleum Geologists Bulletin., 83, 314-332.
  32. Kaminski, M., & Perdana, P. (2017). New foraminifera from the Lower Silurian Qusaiba Shale Formation of Saudi Arabia. Micropaleontology, 63, 59-66.
  33. Kaminski, M., & Perdana, P. (2020). Early Silurian benthic foraminifera from Saudi Arabia -including the oldest known multichambered lituolids. Stratigraphy, 17, 141- 185. Knaust, D., & Minter, N. J. (2018). The fish swimming trace Undichna unisulca from the Silurian of Sweden: Probably the oldest vertebrate locomotion trace fossil. Lethaia, 51(4), 469-472.
  34. Knecht, R. J., Benner, J. S., Rogers, D. C., & Ridge, J. C. (2009). Surculichnus bifurcauda n. igen., n. isp., a trace fossil from Late Pleistocene glaciolacustrine varves of the Connecticut River Valley, USA, attributed to notostracan crustaceans based on neoichnological experimentation. Palaeogeography, Palaeoclimatology, Palaeoecology., 272(3-4), 232-239.
  35. Kok, W. K., Lim, C. B., Lam, T. J., & Ip, Y. K. (1998). The mudskipper Periophthalmodon schlosseri respires more efficiently on land than in water and vice versa for Boleophthalmus boddaerti. The Journal of Experimental Zoology, 280(1), 86-90.
  36. Kranz, P. M. (1974). Computer simulation of fossil assem- blage formation under conditions of anastrophic burial. Journal of Paleontology., 48, 800-808.
  37. Lüning, S., Craig, J., Loydell, D. K., Štorch, P., & Fitches, B. (2000). Lower Silurian 'hot shales' in North Africa and Arabia: Regional distribution and depositional mod- el. Earth-Science Reviews., 49(1-4), 121-200.
  38. Mahmoud, M. D., Vaslet, D., & Husseini, M. I. (1992). The lower Silurian formation of Saudi Arabia: An important hydrocarbon source rock. American Association of Petroleum Geologists Bulletin., 76, 1491-1506.
  39. Mai, H. V., Tran, L. X., Dinh, Q. M., Tran, D. D., Murata, M., Sagara, H., … Ishimatsu, A. (2019). Land invasion by the mudskipper, Periophthalmodon septemradiatus, in fresh and saline waters of the Mekong River. Scientific Reports, 9(1), 14227.
  40. Minter, N. J., & Braddy, S. J. (2006). The fish and amphib- ian swimming traces Undichna and Lunichnium, with examples from the Lower Permian of New Mexico, USA. Palaeontology, 49(5), 1123-1142.
  41. Mitchell, J. K. (1993). Fundamentals of soil behavior. Wiley.
  42. Mizuuchi, R., Kawase, H., Shin, H., Iwai, D., & Kondo, S. (2018). Simple rules for construction of a geometric nest structure by pufferfish. Scientific Reports, 8(1), 12366- 12366.
  43. Morris, S. C., & Caron, J.-B. (2014). A primitive fish from the Cambrian of North America. Nature, 512(7515), 419-422.
  44. Morrissey, L. B., Braddy, S. J., Bennett, J. P., Marriott, S. B., & Tarrant, P. R. (2004). Fish trails from the Lower Old Red Sandstone of Tredomen Quarry, Powys, south- east Wales. Geology, 39, 337-358.
  45. Muñiz, F., Belaústegui, Z., Cárcamo, C., Domènech, R., & Martinell, J. (2015). Cruziana-and Rusophycus-like trac- es of recent Sparidae fish in the estuary of the Piedras River (Lepe, Huelva, SW Spain. ). Palaeogeography, Palaeoclimatology, Palaeoecology., 439, 176-183.
  46. Murdy, E., & Hoese, D. (2002). Gobiidae. In K. E. Carpenter (Ed.), The living marine resources of the Western Central Atlantic. Vol. 3: Bony Fishes, Part 2 (Opistognathidae to Molidae). FAO species identification guide for fishery pur- poses and American Society of Ichthyologist and Herpetologists Special Publication No. 5, FAO (pp. 1781- 1796).
  47. Niedźwiedzki, G., & Szrek, P. (2020). Non-tetrapod trace fossils from the Middle Devonian tetrapod tracksite at Zachełmie Quarry, Holy Cross Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology., 553, 109763.
  48. Pearson, N., Gingras, M., Armitage, I., & Pemberton, G. (2007). Significance of Atlantic sturgeon feeding excava- tions, Mary's Point, Bay of Fundy, New Brunswick, Canada. PALAIOS, 22(5), 457-464.
  49. Reineck, H.-E. (1963). Sedimentgefüge im Bereich der südli- chen Nordsee. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 505, 1-138.
  50. Schäfer, W. (1962). Aktuo-Paläontologie. Kramer.
  51. Shu, D. G., Luo, H. L., Morris, S. C., Zhang, X. L., Hu, S. X., Chen, L., … Chen, L. Z. (1999). Lower Cambrian vertebrates from south China. Nature, 402(6757), 42-46.
  52. Shu, D. G., Morris, S. C., Han, J., Zhang, Z. F., Yasui, K., Janvier, P., … Liu, H. Q. (2003). Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature, 421(6922), 526-529.
  53. Stump, T. E., Al-Hajri, S., & Van der Eem, J. G. L. A. (1995). Geology and biostratigraphy of the Late Precambrian through Palaeozoic sediments of Saudi Arabia. Review of Palaeobotany and Palynology., 89(1-2), 5-17.
  54. Swanson, B. O., & Gibb, A. C. (2004). Kinematics of aquat- ic and terrestrial escape responses in mudskippers. The Journal of Experimental Biology, 207(Pt 23), 4037-4044.
  55. Szrek, P., Salwa, S., Niedźwiedzki, G., Dec, M., Ahlberg, P. E., & Uchman, A. (2016). A glimpse of a fish face -an exceptional fish feeding trace fossil from the Lower Devonian of the Holy Cross Mountains. Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol, 454, 113-124.
  56. Takiyama, T., Hamasaki, S., & Yoshida, M. (2016). Comparison of the visual capabilities of an amphibious and an aquatic goby that inhabit tidal mudflats. Brain, Behavior and Evolution, 87(1), 39-50.
  57. Taylor, A. M., & Goldring, R. (1993). Description and anal- ysis of bioturbation and ichnofabric. Journal of the Geological Society of London., 150(1), 141-148.
  58. Todesco, R., & Avanzini, M. (2008). First record of the fish trace fossil Undichna from the Middle Triassic of Italy. Acta Geology, 83, 253-257.
  59. Uchman, A., Torres, P., Johnson, M. E., Berning, B., Ramalho, R. S., Rebelo, A. C., … Ávila, S. P. (2018). Feeding traces of recent ray fish and occurrences of the trace fossil Piscichnus waitemata from the Pliocene of Santa Maria Island, Azores (Northeast Atlantic). PALAIOS, 33(8), 361-375.
  60. Wetzel, A. (1999). Tilting marks: A wave-produced tool mark resembling a trace fossil. Palaeogeography, Palaeoclimatology, Palaeoecology., 145(1-3), 251-254.
  61. Wetzel, A. (2013). Tilting marks: Observations on tool marks resembling trace fossils and their morphological varieties. Sedimentary Geology., 288, 60-65.
  62. Wisshak, M., Volohonsky, E., & Blomeier, D. (2004). Acanthodian fish trace fossils from the Early Devonian of Spitsbergen. Acta Palaeontologica Polonica, 49, 629- 634. Zalasiewicz, J., Williams, M., Miller, M., Page, A., & Blackett, E. (2007). Early Silurian (Llandovery) graptolites from central Saudi Arabia: First documented record of Telychian faunas from the Arabian Peninsula. GeoArabia, 12, 15-36.