Patient-Specific Modelling in Orthopedics: From Image to Surgery
2012, Lecture Notes in Computational Vision and Biomechanics
https://doi.org/10.1007/978-94-007-4270-3_6Abstract
In orthopedic surgery, to decide upon intervention and how it can be optimized, surgeons usually rely on subjective analysis of medical images of the patient, obtained from computed tomography, magnetic resonance imaging, ultrasound or other techniques. Recent advancements in computational performance, image analysis and in silico modeling techniques have started to revolutionize clinical practice through the development of quantitative tools, including patient-specific models aiming at improving clinical diagnosis and surgical treatment. Anatomical and surgical landmarks as well as features extraction can be automated allowing for the creation of general or patient-specific models based on statistical shape models. Preoperative virtual planning and rapid prototyping tools allow the implementation of customized surgical solutions in real clinical environments. In the present chapter we discuss the applications of some of these techniques in orthopedics and present new computer-aided tools that can take us from image analysis to customized surgical treatment.
References (71)
- Ahn DG, Lee JY, Yang DY (2006) Rapid prototyping and reverse engineering application for or- thopedic surgery planning. Journal of mechanical science and technology 20(1): 19-28.
- Anaya AM, Vigneron L, Diab M, Burch S (2011) Evaluation of virtual planning, rapid prototyp- ing modeling, and image-guided navigation in periacetabular osteotomy. Proceedings of Computer Assisted Radiology and Surgery 2011.
- Audenaert EA, Baelde N, Huysse W, Vigneron L, Pattyn C (2010) Development of a three- dimensional detection method of cam deformities in femoroacetabular impingement. Skeletal Radiol. 40:921-7.
- Audenaert E, Vigneron L, Pattyn C (2011) A method for three-dimensional evaluation and com- puter aided treatment of femoroacetabular impingement. Comput Aided Surg 16:143-8.
- Bagaria V, Deshpande S, Rasalkar DD, Kuthe A, Paunipagar BK (2011). Use of rapid prototyp- ing and three-dimensional reconstruction modeling in the management of complex fractures. Eur J Radiol. [Epub ahead of print]
- Baldwin MA, Langenderfer JE, Rullkoetter PJ, Laz PJ (2010). Development of subject specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Comput Methods Programs Biomed 97:232-40.
- Barratt DC, Chan CS, Edwards PJ, Penney GP, Slomczykowski M, Carter TJ, et al. (2008) In- stantiation and registration of statistical shape models of the femur and pelvis using 3D ultra- sound imaging. Med Image Anal 12:358-74.
- Behiels G, Maes F, Vandermeulen D, Suetens P (2002) Evaluation of image features and search strategies for segmentation of bone structures in radiographs using active shape models. Med Image Anal 6:47-62.
- Benameur S, Mignotte M, Parent S, Labelle H, Skalli W, de Guise J. (2003) 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imag Graph 27:321-37.
- Birnbaum K, Schkommodau E, Decker N, Prescher A, Klapper U, Radermacher K. (2001) Com- puter-assisted orthopedic surgery with individual templates and comparison to conventional operation method. Spine 26:365-370.
- Blanz V, Mehl A, Vetter T, Seidel HP. (2004) A statistical method for robust 3D surface recon- struction from sparse data. In: International symposium on 3D data processing, visualization and transmission. p. 293-300.
- Blemker SS, Asakawa DS, Gold GE, Delp SL. (2007) Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imaging. 25(2):441-51.
- Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis, vol. 1, no. 3, pp. 225-243.
- Brown GA, Firoozbakhsh K, DeCoster TA, Reyna JR Jr, Moneim M. (2003) Rapid prototyping: the future of trauma surgery? J Bone Joint Surg. 85(4):49-55.
- Bryan R, Nair PB, Taylor M. (2009) Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk. J Biomech 42:2171-6.
- Cerveri P, Marchente M, Bartels W, Corten K, Simon JP, Manzotti A (2010) Automated method for computing the morphological and clinical parameters of the proximal femur using heuris- tic modeling techniques. Ann Biomed Eng 38(5):1752-1766.
- Cootes, T. F., Taylor, C. J. (2004) Anatomical statistical models and their role in feature extrac- tion. The British Journal of Radiology, 77: S133-S139
- Cootes TF, Taylor CJ, Cooper D, Graham J. (1995) Active shape models -their training and ap- plication. Computer Vision and Image Understanding 61:38-59.
- Cootes TF, Taylor CJ and M. M. Pt. (2004) Statistical models of appearance for computer vision. [Online: http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.58.1455.
- Delaunay S, Dussault RG, Kaplan PA, Alford BA (1997) Radiographic measurements of dys- plastic adult hips. Skeletal Radiol 26(2):75-81
- Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. (2007) OpenSim: open-source software to create and analyze dynamic simulations of move- ment. IEEE Trans Biomed Eng 54:1940-1950.
- Delp SL, Loan JP. (1995) A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput Biol Med. 1995 25(1):21-34.
- Dryden IL, Mardia K (1998) Statistical Shape Analysis. John Wiley Sons, Chichester.
- Ehrhardt J, Handels H, Plötz W, Pöppl SJ (2004) Atlas-based recognition of anatomical struc- tures and landmarks and the automatic computation of orthopedic parameters. Methods Inf Med 43(4):391-397.
- Fleute M, Lavallée S (1998) Building a complete surface model from sparse data using statistical shape model. Lect Notes Comput Sci 1496:879-87.
- Gomes GT (2011) Automatic feature extraction and statistical shape analysis of the Femur. Submitted to computer methods in biomechanics and biomedical engineering
- Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three- dimensional motions: application to the knee. J Biomech Eng 105(2):136-144.
- Hafez MA, Chelule KL, Seedhom BB, Sherman KP (2006) Computer-assisted total knee arthroplasty using patient-specific templating. Clin Orthop Relat Res. 444:184-192.
- Hananouchi T, Saito M, Koyama T, Hagio K, Murase T, Sugano N, Yoshikawa H. (2009) Tai- lor-made surgical guide based on rapid prototyping technique for cup insertion in total hip arthroplasty. Int J Med Robot 5(2):164-169.
- Hankemeier S, Gosling T, Richter M, Hufner T, Hochhausen C, Krettek C (2006) Computer- assisted analysis of lower limb geometry: higher intraobserver reliability compared to con- ventional method. Comput Aided Surg 11(2):81-86.
- Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13:543-63.
- Hopkinson N, Hague R, Dickens P (2005) Rapid Manufacturing: An Industrial Revolution for the Digital Age. Wiley.
- Jolliffe IT (2002) Principal Component Analysis. 2002; 2nd Edition. Springer.
- Kunz M, Rudan JF, Xenoyannis GL, Ellis RE (2010) Computer assisted hip resurfacing using individualized drill templates. The Journal of Arthroplasty 25(4):600-606.
- Kurazume R, Nakamura K, Okada T, Sato Y, Sugano N, Koyama T, Iwashita Y, and Hasegawa T (2009) 3D reconstruction of a femoral shape using a parametric model and two 2d fluoro- scopic images. Comput. Vis. Image Underst. 113(2): 202-211.
- Lamecker H, Seebass M, Hege HC, and Deuflhard P (2004) A 3d statistical shape model of the pelvic bone for segmentation J. M. Fitzpatrick and M. Sonka, Eds., vol. 5370, no. 1. SPIE, 1341-1351.
- Leong NL, Buijze GA, Fu EC, Stockmans F, Jupiter JB (2010) Computer-assisted versus non- computer-assisted preoperative planning of corrective osteotomy for extra-articular distal ra- dius malunions: a randomized controlled trial. BMC Musculoskeletal Disorders 11:282.
- Lerner AL, Tamez-Pena JG, Houck JR, Yao J, Harmon HL, Salo AD, Totterman SM (2003) The use of sequential MR image sets for determining tibiofemoral motion: reliability of coordi- nate systems and accuracy of motion tracking algorithm. J Biomech Eng 125(2):246-253.
- Lombardi AV, Berend KR, Adams JB (2008) Patient-specific Approach in Total Knee Arthroplasty. Orthopedics 31(9): 927-930.
- Morton NA, Maletsky LP, Pal S, Laz PJ (2007) Effect of variability in anatomical landmark lo- cation on knee kinematic description. J Orthop Res 25(9):1221-1230.
- Nizard R (2002) Computer assisted surgery for total knee arthroplasty. Acta Orthop Belg 68(3):215-230.
- Nofrini L, Slomczykowski M, Iacono F, Marcacci M (2004) Evaluation of accuracy in ankle cen- ter location for tibial mechanical axis identification. J Invest Surg 17(1):23-29.
- Oka K, Moritomo H, Goto A, et al. (2008) Corrective osteotomy for malunited intra-articular fracture of the distal radius using a custom-made surgical guide based on three-dimensional computer simulation: case report. J Hand Surg Am 33:835-840.
- Oka K, Murase T, Moritomo H, Goto A, Sugamoto K, Yoshikawa H. Corrective osteotomy us- ing customized hydroxyapatite implants prepared by preoperative computer simulation. (2010) Int J Med Robot. 6(2):186-193.
- Paley D (2002) Normal lower limb alignment and joint orientation. In: Paley D, Herzenberg JE Principles of Deformity Correction. Springer-Verlag, New York.
- Pattyn C, De Smedt K, Gelaude F, Clijmans T, Dille J, Geebelen B, Audenaert E (2010) A cus- tom-made guide for femoral component positioning in hip resurfacing arthroplasty: develop- ment and validation study. Journal of Biomechanics 43(1).
- Raaijmaakers M, Gelaude F, De Smedt K, Clijmans T, Dille J, Mulier M (2010) A custom-made guide-wire positioning device for hip surface replacement arthroplasty: description and first results. BMC Musculoskelet Disord. 11:161.
- Radermacher K, Portheine F, Anton M, Zimolong A, Kaspers G,Rau G, Staudte HW (1998) Computer assisted orthopaedic surgery with image-based individual templates. Clin Orthop Relat Res. 354:28-38.
- Rajamani KT, Styner MA, Talib H, Zheng G, Nolte LP, Gonzáles Ballester MA (2007) Statisti- cal deformable bone models for robust 3D surface extrapolation from sparse data. Med Image Anal 11:99-109.
- Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, and Hawkes DJ (1999) Non-rigid regis- tration using free-form deformations: Application to breast mr images. IEEE Transaction on Medical Imaging, 18:712 -721.
- Schöttle PB, Schmeling A, Rosenstiel N, Weiler A (2007) Radiographic land-marks for femoral tunnel placement in medial patellofemoral ligament reconstruction. Am J Sports Med 35(5):801-804.
- Siston RA, Giori NJ, Goodman SB, Delp SL (2007) Surgical navigation for total knee arthroplasty: a perspective. J Biomech 40(4):728-735.
- Styner M, Lieberman JA, McClure RK, Weinberger DR, Jones DW, and Gerig G (2005) Mor- phometric analysis of lateral ventricles in schizophrenia and healthy controls regarding genet- ic and disease specific factors. Proceedings of the National Academy of Sciences, 102(13):4872-4877.
- Stindel E, Briard JL, Merloz P, Plaweski S, Dubrana F, Lefevre C, et al. ( 2002) Bone morphing: 3D morphological data for total knee arthroplasty. Comput Aid Surg 7:156-68.
- Subburaj K, Ravi B, Agarwal M (2010) Computer-aided methods for assessing lower limb de- formities in orthopaedic surgery planning. Comput Med Imaging Graph 34(4):277-288.
- Subburaj K, Ravi B, Agarwal M (2009) Automated identification of anatomical landmarks on 3D bone models reconstructed from CT scan images. Comput Med Imaging Graph 33(5):359-368.
- Tang TS, Ellis RE (2005) 2D/3D deformable registration using a hybrid atlas. Med Image Comput Assist Interv 8:223-30.
- Van Cauter S, De Beule M, Van Haver A, Verdonk P, Verhegghe B (2011) Automated extrac- tion of the femoral anatomical axis for determining the intramedullary rod parameters in total knee arthroplasty. Accepted for publication in International Journal for Numerical Methods in Biomedical Engineering.
- Van Sint Jan S, Della Croce U (2005) Identifying the location of human skeletal landmarks: why standardized definitions are necessary-a proposal. Clin Biomech (Bristol, Avon) 20(6):659- 660. Van Sint Jan S (2007) Color Atlas of skeletal landmark definitions. Guidelines for reproducible manual and virtual palpations. Churchill Livingstone-Elsevier, Edinburgh.
- Victor J, Deprez P, Premanathan A, Keppler L. (2011) Virtual 3d planning and patient specific surgical guides for osteotomies around the knee. Proceedings of Computer Assisted Ortho- paedics Surgery 2011.
- Victor J, Van Doninck D, Labey L, Innocenti B, Parizel PM, Bellemans J (2009) How precise can bony landmarks be determined on a CT scan of the knee? Knee 16(5):358-365.
- Wolf A, Digioia AM 3rd, Mor AB, Jaramaz B (2005) Cup alignment error model for total hip arthroplasty. Clin Orthop Relat Res (437):132-13
- Wong KC, Kumta SM, Antonio GE, Tse LF (2008) Image fusion for computer-assisted bone tumor surgery. Clin Orthop Relat Res. 466(10):2533-41.
- Wong KC, Kumta SM, Leung KS, Ng KW, Ng EW, Lee KS. (2010) Integration of CAD/CAM planning into computer assisted orthopaedic surgery. Comput Aided Surg. 15(4-6):65-74.
- Yang, YM., Rueckert, D, Bull, A.M.J (2008) Predicting the shapes of bones at a joint: applica- tion to the shoulder. Computer Methods in Biomech. and Biomed. Eng., 11(1):19-30.
- Yoon YS, Hodgson AJ, Tonetti J, Masri BA, Duncan CP (2008) Resolving inconsistencies in de- fining the target orientation for the acetabular cup angles in total hip arthroplasty. Clin Biomech 23(3):253-259.
- Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y (2001) Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty 16(4):493-497.
- Zheng G, Gollmer S, Schumann S, Dong X, Feilkas T, and Ballester MA G (2008) A 2d/3d cor- respondence building method for reconstruction of a patient-specific 3d bone surface model using point distribution models and calibrated X-ray images. Medical Image Analysis 13(6): 883-899.
- Zheng G, Gonzáles-Ballester MA, Styner M, Nolte LP. (2006) Reconstruction of patient specific 3d bone surface from 2d calibrated fluoroscopic images and point distribution model. Lect Notes Comput Sci 4190:25-32.
- Zheng G, Schumann S (2009) 3D reconstruction of a patient-specific surface model of the prox- imal femur from calibrated X-ray radiographs: a validation study. Med Phys 36:1155-66.
- Ziegler CG, Pietrini SD, Westerhaus BD, Anderson CJ, Wijdicks CA, Johansen S, Engebretsen L, Laprade RF (2010) Arthroscopically Pertinent Landmarks for Tunnel Positioning in Sin- gle-Bundle and Double-Bundle Anterior Cruciate Ligament Reconstructions. Am J Sports Med Dec 20. [Epub ahead of print]