Academia.eduAcademia.edu

Outline

Remarks on q-Monotone Functions and the Bernstein polynomials

Results in Mathematics

https://doi.org/10.1007/S00025-022-01810-5

Abstract

We show that certain inequalities involving differences of the Bernstein basis polynomials and values of a function $$f\in C[0,1]$$ f ∈ C [ 0 , 1 ] , which is twice differentiable in [0, 1], imply that the function is q-monotone. This provides a partial answer to an open problem of the authors in a recent paper.

References (6)

  1. Abel, U.: An inequality involving Bernstein polynomials and convex functions. J. Approx. Theory 222, 1-7 (2017)
  2. Abel, U., Leviatan, D.: An extension of Raşa's conjecture to q-monotone func- tions. Results Math. 75:180, 1-13 (2020)
  3. Abel, U., Leviatan, D., Raşa, I.: Relations between the Bernstein polynomials and q-monotone functions. Results Math. 77:239, 1-12 (2022)
  4. Abel, U., Raşa, I.: A sharpening of a problem on Bernstein polynomials and convex functions. Math. Inequ. Appl. 21, 773-777 (2018)
  5. Lorentz, G.G.: Bernstein polynomials, Mathematical Expositions, No. 8., Univer- sity of Toronto Press, Toronto, (1953)
  6. Mrowiec, J., Rajba, T., Wasowicz, S.: A solution to the problem of Raşa connected with Bernstein polynomials. J. Math. Anal. Appl. 446, 864-878 (2017) Ulrich Abel Technische Hochschule Mittelhessen, Fachbereich MND Wilhelm-Leuschner-Straße 13 61169 Friedberg Germany e-mail: ulrich.abel@mnd.thm.de