Fuzzy solution of nonlinear Boussinesq equation
Journal of Hydroinformatics
https://doi.org/10.2166/HYDRO.2022.026Abstract
In this paper, the solution of the one-dimensional second-order unsteady nonlinear fuzzy partial differential Boussinesq equation is examined. The physical problem concerns unsteady flow in a semi-infinite unconfined aquifer bordering a lake. In the examined problem, there is a sudden rise and subsequent stabilization of the lake's water level, thus the aquifer is recharging from the lake. The aquifer boundary conditions are considered fuzzy and, therefore, ambiguities are created to the solution of the overall physical problem. Then, the fuzzy problem is translated to a system of crisp boundary value problems. By using a Boltzmann transformation, the crisp problem is transformed into an integro-differential equation and solved with the help of a special numerical method. This method has a simple iterative procedure, which converges rapidly and is proven very accurate in comparison with other analytical methods. Additionally, the algebraic equation estimates very close to the st...
References (61)
- Allahviranloo, T., Gouyandeh, Z., Armand, A. & Hasanoglu, A. 2015 On fuzzy solutions for heat equation based on generalized Hukuhara differentiability. Fuzzy Sets and Systems 265, 1-23. https://doi.org/10.1016/j.fss.2014.11.009
- Bansal, R. K. 2012 Groundwater fluctuations in sloping aquifers by time-varying replenishment and seepage from a uniformly rising stream. Transport in Porous Media 94 (3), 817-836.
- Bansal, R. K. 2016 Approximate analytical solution of Boussinesq equation in homogeneous medium with leaky base. Applications and Applied Mathematics: An International Journal (AAM) 11 (1), 184-191.
- Bansal, R. K. 2017 Unsteady seepage flow over sloping beds in response to multiple localized recharge. Applied Water Science 7 (2), 777-786.
- Bartlett, M. S. & Porporato, A. 2018 Class of exact solutions of the Boussinesq equation for horizontal and sloping aquifers. Water Resources Research 54 (2), 767-778.
- Basha, H. A. 2013 Traveling wave solution of the Boussinesq equation for groundwater flow in horizontal aquifers. Water Resources Research 49, 1668-1679. doi:10.1002/wrcr.20168.
- Bede, B. 2006 A note on two-point boundary value problems associated with non-linear fuzzy differential equations. Fuzzy Sets and Systems 157, 986-989. https://doi.org/10.1016/j.fss.2005.09.006.
- Bede, B. & Gal, S. G. 2005 Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems 151, 581-599. https://doi.org/10.1016/j.fss.2004.08.001
- Bede, B. & Stefanini, L. 2013 Generalized differentiability of fuzzy-valued functions. Fuzzy Sets and Systems 230, 119-141.
- Borana, R. N., Pradhan, V. H. & Mehta, N. 2013 Numerical solution of Boussinesq equation arising in one-dimensional infiltration phenomenon by using finite difference method. International Journal of Research in Engineering & Technology 2 (8), 202-209. Available from: http://www.ijret.org.
- Boussinesq, J. 1904 Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources. Journal de Mathématiques Pures et Appliquées 10 (5), 5-78.
- Chávez, C., Fuentes, C., Zavala, M. & Brambila, F. 2011 Numerical solution of the Boussinesq equation. Application to the agricultural drainage. African Journal of Agricultural Research 6 (18), 4210-4222.
- Chen, Z. X., Bodvarsson, G. S., Witherspoon, E. A. & Yortsos, Y. C. 1995 An integral equation formulation for the unconfined flow of groundwater with variable inlet conditions. Transport in Porous Media 18, 15-36.
- Chor, T., Dias, N. L. & de Zarate, A. R. 2013 An exact series and improved numerical and approximate solutions for the Boussinesq equation. Water Resources Research 49, 7389-7387. doi:10.1002/wrcr.20543,2013.
- Diamond, P. 2002 Brief note on the variation of constants formula for fuzzy differential equations. Fuzzy Sets and Systems 129, 65-71. https:// doi.org/10.1016/S01
- Dubois, D., Foulloy, L., Mauris, G. & Prade, H. 2004 Probability possibility transformations, triangular fuzzy sets and probabilistic inequalities. Reliable Computing 10, 273-297.
- Frangakis, C. N. & Tzimopoulos, C. 1979 Unsteady groundwater flow on sloping bedrock. Water Resources Research 15, 176-180. https:// doi.org/10.1029/WR015i001p00176
- Goetschel, R. & Voxman, W. 1986 Elementary fuzzy calculus. Fuzzy Sets and Systems 18, 31-43.
- Hayek, M. 2019 Accurate approximate semi-analytical solutions to the Boussinesq groundwater flow equation for recharging and discharging of horizontal unconfined aquifers. Journal of Hydrology 570, 411-422.
- Hukuhara, M. 1967 Intégration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10, 205-233.
- Iqbal, N., Akgul, A., Shah, R., Bariq, A., Al-Sawalha, M. M. & Ali, A. 2022 On solutions of fractional-order gas dynamics equation by effective techniques. Journal of Function Spaces 2022, 1-14. https://doi.org/10.1155/2022/3341754
- Jiang, Q. & Tang, Y. 2015 A general approximate method for the groundwater response problem caused by water level variation. Journal of Hydrology 529, 398-409.
- Kaleva, O. 1987 Fuzzy differential equations. Fuzzy Sets and Systems 24, 301-317. doi:10.1016/0165-0114(87)90029-7.
- Khan, H., Farooq, U., Shah, R., Baleanu, D., Kumam, P. & Arif, M. 2019 Analytical solutions of (2 þ Time fractional order) dimensional physical models, using modified decomposition method. Applied Sciences 10 (1), 1-20.
- Khastan, A. & Nieto, J. J. 2010 A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis 72, 3583-3593.
- Kirkham, D. & Powers, W. L. 1972 Advanced Soil Physics. Wiley-Interscience, New York, 534.
- Lockington, D. A. 1997 Response of unconfined aquifer to sudden change in boundary head. Journal of Irrigation and Drainage Engineering 123, 24-27.
- Lockington, D. A., Parlange, J. Y., Parlange, M. B. & Selker, J. 2000 Similarity solution of the Boussinesq equation. Advances in Water Resources 23, 725-729.
- Moutsopoulos, K. N. 2010 The analytical solution of the Boussinesq equation for flow induced by a step change of the water table elevation revisited. Transport in Porous Media 85 (3), 919-940.
- Mylonas, N. 2022 Applications in Fuzzy Statistic and Approximate Reasoning. PhD, Dimokritos University of Thrace-Greece, p. 164, (In Greek).
- Negoita, C. V. & Ralescu, D. A. 1975 Representation theorems for fuzzy concepts. Kybernetes 4 (3), 169-174.
- Nguyen, T. 2018 Numerical and Analytical Analysis of Flow in Stratified Heterogeneous Porous Media. M.Sc., University of Stavanger, Norway, p. 76.
- Nieto, J. J. & Rodríguez-López, R. 2006 Bounded solutions for fuzzy differential and integral equations. Chaos, Solitons and Fractals 27, 1376-1386. doi:10.1016/j.chaos.2005.05.012.
- O'Regan, D., Lakshmikantham, V. & Nieto, J. J. 2003 Initial and boundary value problem for fuzzy differential equations. Nonlinear Analysis 54, 405-415. doi:10.1016/S0362-546X(03)00097-X.
- Olsen, J. S. & Telyakovskiy, A. S. 2013 Polynomial approximate solutions of a generalized Boussinesq equation. Water Resources Research 49 (5), 3049-3053. doi:10.1002/wrcr.20242,2013.
- Parlange, J. Y., Hogarth, W. L., Govindaraju, R. S., Parlange, M. B. & Lockington, D. 2000 On an exact analytical solution of the Boussinesq equation. Transport in Porous Media 39, 339-345.
- Philip, J. R. 1957 Numerical solution of equations of the diffusion type with diffusivity concentration-dependent. II. Australian Journal of Physics 30, 20-42.
- Pistiner, A. 2008 Similarity solution to unconfined flow in an aquifer. Transport in Porous Media 71, 265-272. doi:10.1007/s11242-007-9124-5.
- Polubarinova-Kochina, P. Y. 1948 On a non-linear differential equation occurring in seepage theory. Doklady Akadémii Nauk SSSR 35 (6).
- Polubarinova-Kochina, P. Y. 1949 On unsteady motions of groundwater during seepage from water reservoirs. PMM (Prinkladaya Matematica I Mekhanica) 13 (2).
- Polubarinova-Kochina, P. Y. 2015 Theory of Groundwater Movement, 2015 ed, 1st edn. Princeton University Press, NJ, 1962, USA, 2015; pp.613; ISBN.
- Puri, M. L. & Ralescu, D. A. 1983 Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications 91, 552-558.
- Rashid, S., Khalid, A., Sultana, S., Hammouch, Z., Shah, R. & Alsharif, M. A. 2021 A novel analytical view of time-fractional korteweg-de Vries equations via a new integral transform. Symmetry 13 (7), 1-31. https://doi.org/10.3390/sym13071254
- Remson, I., Hornberger, G. M. & Moltz, F. G. 1971 Numerical Methods in Subsurface Hydrology. Wiley-Interscience, NY, London, Sydney, Toronto, pp. 389.
- Samarinas, N., Tzimopoulos, C. & Evangelides, C. 2018 Fuzzy numerical solution to horizontal infiltration. International Journal of Circuits, Systems and Signal Processing 12, 326-332.
- Samarinas, N., Tzimopoulos, C. & Evangelides, C. 2021 Fuzzy numerical solution to the unconfined aquifer problem under the Boussinesq equation. Water Supply 21 (6), 3210-3224. https://doi.org/10.2166/ws.2021.115
- Samarinas, N., Tzimopoulos, C. & Evangelides, C. 2022 An efficient method to solve the fuzzy Crank-Nicolson scheme with application to the groundwater flow problem. Journal of Hydroinformatics 24 (3), 590-609. https://doi.org/10.2166/hydro.2022.150
- Seikkala, S. 1987 On the fuzzy initial problem. Fuzzy Sets and Systems 24, 319-330. doi:10.1016/0165-0114(87)90030-3.
- Shah, R., Khan, H., Kuman, P. & Arif, M. 2019 An analytical technique to solve the system of nonlinear fractional partial differential equations. Mathematics 505 (7), 1-16. doi:10.3390/math7060505.
- Stefanini, L. 2010 A generalization of Hukuhara difference and division for interval and fuzzy Arithmetic. Fuzzy Sets and Systems 0 (161), 1564-1584. doi:10.1016/j.fss.2009.06.009.
- Telyakovskiy, A. S., Braga, G. A. & Furtado, F. 2002 Approximate similarity solutions to the Boussinesq equation. Advances in Water Resources 25 (2), 191-194. doi:10.1016/S0309-1708(01)00026-4.
- Tolikas, P. K., Sidiropoulos, E. & Tzimopoulos, C. D. 1984 A simple analytical solution for the Boussinesq one-dimensional groundwater flow equation. Water Resources Research 20 (1), 24-28.
- Tolikas, P. K., Damaskinidou, A. & Sidiropoulos, E. 1990 Series representation of Flux for the Boussinesq equation. Water Resources Research 26 (12), 2881-2886.
- Tzimopoulos, C. & Terzides, G. 1975 Écoulement non permanent dans un sol drainé par des fosses parallèles. Journal of Hydrology 27, 73-93.
- Tzimopoulos, C. & Terzides, G. 1976 Solution de l'équation de Boussinesq par une méthode des éléments finis. Journal Hydrology 30, 1-18.
- Tzimopoulos, C. & Tolikas, P. 1980 Technical and theoretical aspects in artificial ground water recharge. ICID Bulletin (International Commission on Irrigation and Drainage) 29 (2), 40-44.
- Tzimopoulos, C., Papadopoulos, K., Evangelides, C. & Papadopoulos, B. 2019 Fuzzy solution to the unconfined aquifer problem. Water 11 (54), 1-19.
- Tzimopoulos, C., Papadopoulos, K., Evangelides, C. & Spyrides, A. 2021 Recharging and discharging of unconfined aquifers. Case of nonlinear Boussinesq equation. In Proceedings of the Eighth International Conference on Environmental Management,Engineering, Planning and Economics (CEMEPE 2021) and SECOTOX Conference, July 20-24, 2021, Thessaloniki, Greece, pp. 74-80.
- Vorobiev, D. & Seikkala, S. 2002 Towards the theory of fuzzy differential equations. Fuzzy Sets and Systems 125, 231-237. doi:10.1016/ S0165-0114(00)00131-7.
- Wiedeburg, O. 1890 Über die hydrodiffusion. Annalen der PhysiK 277 (12), 675-711.
- Zadeh, L. A. 1965 Fuzzy sets. Information and Control 8, 338-353. First received 16 February 2022; accepted in revised form 5 October 2022. Available online 1 November 2022