Academia.eduAcademia.edu

Outline

Vertex stress related parameters for certain Kneser graphs

2021, Acta Universitatis Sapientiae, Informatica

https://doi.org/10.2478/AUSI-2021-0015

Abstract

This paper presents results for some vertex stress related parameters in respect of specific subfamilies of Kneser graphs. Kneser graphs for which diam(KG(n, k)) = 2 and k ≥ 2 are considered. The note establishes the foundation for researching similar results for Kneser graphs for which diam(KG(n, k)) ≥ 3. In addition some important vertex stress related properties are stated. Finally some results for specific bipartite Kneser graphs i.e. BK(n, 1), n ≥ 3 will be presented. In the conclusion some worthy research avenues are proposed.

References (12)

  1. N. Biggs, Algebraic Graph Theory 2 nd Edition, Cambridge University Press, Cambridge, 1993, ISBN-13: 978-0521458979. ⇒ 328, 329
  2. J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press, London, 1976. ⇒ 324
  3. R.C. Freiwald, An Introduction to Set Theory and Topology, Washington State University, Saint. Louis, (2014), http://doi.org/10.7936/K7D798QH ⇒ 324
  4. F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969. ⇒ 324
  5. J. Kok, J. Shiny, V. Ajitha, Total vertex stress alteration in cycle related graphs, Matematichki Bilten, 44, 2 (2020) 149-162. http://doi.org/10.37560/ matbil2020149k ⇒ 326
  6. J. Kok, K. P. Chithra, N.K. Sudev, C. Susanth, A study on set-graphs, Interna- tional Journal of Computer Applications, 118, 7, (2015) 1-5. http://doi.org/ 10.5120/20754-3173 ⇒ 333
  7. S. M. Mirafzal, A. Zafari, Some algebraic properties of bipartite Kneser graphs, arXiv: 1804.04570V1, (2018) 1-11, to appear in Ars Combinatoria. ⇒ 332
  8. A. Shimbel, Structural parameters of communication networks, The Bulletin of Mathematical Biophysics, 15, 4 (1953) 501-507. ⇒ 326
  9. J. Shiny, V. Ajitha, Stress regular graphs, Malaya Journal of Matematik, 8, 3 (2020) 1152-1154. http://doi.org/10.26637/MJM0803/0072 ⇒326, 328, 329, 332
  10. J. Shiny, Induced stress of some graph operations, Malaya Journal of Matematik, 9(1), (2021), 259-261. https://doi.org/10.26637/MJM0901/0043 ⇒ 326
  11. J. Shiny, J. Kok, V. Ajitha, Total induced vertex stress in barbell-like graphs, Journal of the Indonesian Mathematical Society, 27(2), (2021), 150-157. ⇒ 326
  12. M. Valencia-Pabon and J-C. Vera, On the diameter of Kneser graphs, Discrete Mathematics, 305 (1-3), (2005), 383-385. ⇒ 327