Academia.eduAcademia.edu

Outline

A Human Body Model for Articulated 3D Pose Tracking

2007, Humanoid Robots: New Developments

https://doi.org/10.5772/4884

Abstract
sparkles

AI

This chapter presents a 3D human body model designed for articulated pose tracking, aimed at enhancing human-robot interaction by accurately interpreting human intentions and movements. The model employs rigid limb geometries and an elastic band-based approach for joints, enabling varied degrees of freedom. An iterative tracking algorithm, integrated with depth, color camera, and laser range data, achieves real-time processing (20-25 FPS) for optimal pose estimation. The effectiveness of the model and algorithm is demonstrated through experiments, underscoring its practical applications in non-invasive human tracking.

References (24)

  1. References
  2. Aggarwal, J. K.; Cai, Q. (1999) Human motion analysis: A review, Computer Vision and Image Understanding: CVIU, vol. 73, no. 3, pp. 428-440.
  3. Azad, P.; Ude, A.; Dillmann, R.; Cheng, G. (2004) A full body human motion capture system using particle filtering and on-the-fly edge detection, in Proceedings of the IEEE- RAS/RSJ International Conference on Humanoid Robots. Santa Monica, USA.
  4. Besl, P. J.; McKay, N. D. (1992) A method for registration of 3-d shapes, IEEE Transactions on pattern analysis and machine intelligence, vol. 14, no. 2, pp. 239-256, February.
  5. Bobick, A. F.; Davis, J. W. (2001) The recognition of human movement using temporal templates, IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 3, pp. 257- 267.
  6. Calinon, S.; Billard, A. (2005), Recognition and reproduction of gestures using a probabilistic framework combining PCA, ICA and HMM, in Proceedings of the International Conference on Machine Learning (ICML), Bonn, Germany
  7. Cheung, G. K. M.; Baker, S.; Kanade, T. (2003) Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture, in Computer Vision and Pattern Recognition.
  8. CSEM (2006) Swissranger website. http://www.swissranger.ch
  9. Demirdjian, D.; Darrell, T. (2002) 3-d articulated pose tracking to untethered deictic references, in Multimodel Interfaces, pp. 267-272.
  10. Demirdjian, D. (2003) Enforcing constraints for human body tracking, in Conference on Computer Vision and Pattern Recognition, Workshop Vol. 9, Madison, Wisconsin, USA, pp. 102-109.
  11. Deutscher, J.; Blake, A.; Reid, I. (2000), Articulated body motion capture by annealed particle filtering, in Computer Vision and Pattern Recognition (CVPR), Hilton Head, USA, pp. 2126-2133.
  12. Ehrenmann, M.; Zöllner, R.; Rogalla, O.; Vacek, S.; Dillmann, R. (2003). Observation in programming by demonstration: Training and execution environment, in Proceedings of Third IEEE International Conference on Humanoid Robots, Karlsruhe and Munich, Germany.
  13. Fritsch, J.; Lang, S.; Kleinehagenbrock, M.; Fink, G. A.; Sagerer, G. (2002) Improving adaptive skin color segmentation by incorporating results from face detection, in Proc. IEEE Int. Workshop on Robot and Human Interactive Communication (ROMAN). Berlin, Germany
  14. Fritsch, J.; Kleinehagenbrock, M.; Lang, S.; Plötz, T.; Fink, G.A.; Sagerer, G. (2003), Multi- modal anchoring for human-robot-interaction, Robotics and Autonomous Systems, Special issue on Anchoring Symbols to Sensor Data in Single and Multiple Robot Systems, vol. 43, no. 2-3, pp. 133-147.
  15. Gavrila, D. M. (1999) The visual analysis of human movement: A survey, Computer Vision and Image Understanding, vol. 73, no. 1, pp. 82-98.
  16. H|Anim (2003), Information technology -Computer graphics and image processing -Humanoid animation (H-Anim), Annex B, ISO/IEC FCD 19774, Humanoid Animation Working Group, Specification.
  17. Horn, B. K. P. (1987) Closed-form solution of absolute orientation using unit quaternions, Optical Society of America Journal A, vol. 4, pp. 629-642, Apr. 1987.
  18. Knoop, S.; Vacek, S. & Dillmann, R. (2005). Modelling Joint Constraints for an Articulated 3D Human Body Model with Artificial Correspondences in ICP, Proceedings of the International Conference on Humanoid Robots (Humanoids 2005), Tsukuba, Japan, December 2005, IEEE-RAS
  19. Knoop, S.; Vacek, S. & Dillmann, R. (2006). Sensor Fusion for 3D Human Body Tracking with an Articulated 3D Body Model. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, May 2006
  20. Knoop, S.; Vacek, S. & Dillmann, R. (2006). Sensor fusion for model based 3D tracking. Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Heidelberg, Germany, September 2006
  21. Moeslund, T. B.; Granum, E. (2001) A survey of computer vision-based human motion capture, Computer Vision and Image Understanding, vol. 81, no. 3, pp. 231-268.
  22. Ramanan, D.; Forsyth, D. A. (2003) Finding and tracking people from the bottom up, in Computer Vision and Pattern Recognition, vol. 2, 18-20 June, pp. II-467-II-474.
  23. Sidenbladh, H. (2001) Probabilistic tracking and reconstruction of 3d human motion in monocular video sequences, Ph.D. dissertation, KTH, Stockholm, Sweden.
  24. Wang, L.; Hu, W.; Tan, T. (2004) Recent developments in human motion analysis, Pattern Recognition, vol. 36, no. 3, pp. 585-601, 2003.and Electronics Engineers.