A Human Body Model for Articulated 3D Pose Tracking
2007, Humanoid Robots: New Developments
https://doi.org/10.5772/4884Abstract
AI
AI
This chapter presents a 3D human body model designed for articulated pose tracking, aimed at enhancing human-robot interaction by accurately interpreting human intentions and movements. The model employs rigid limb geometries and an elastic band-based approach for joints, enabling varied degrees of freedom. An iterative tracking algorithm, integrated with depth, color camera, and laser range data, achieves real-time processing (20-25 FPS) for optimal pose estimation. The effectiveness of the model and algorithm is demonstrated through experiments, underscoring its practical applications in non-invasive human tracking.
References (24)
- References
- Aggarwal, J. K.; Cai, Q. (1999) Human motion analysis: A review, Computer Vision and Image Understanding: CVIU, vol. 73, no. 3, pp. 428-440.
- Azad, P.; Ude, A.; Dillmann, R.; Cheng, G. (2004) A full body human motion capture system using particle filtering and on-the-fly edge detection, in Proceedings of the IEEE- RAS/RSJ International Conference on Humanoid Robots. Santa Monica, USA.
- Besl, P. J.; McKay, N. D. (1992) A method for registration of 3-d shapes, IEEE Transactions on pattern analysis and machine intelligence, vol. 14, no. 2, pp. 239-256, February.
- Bobick, A. F.; Davis, J. W. (2001) The recognition of human movement using temporal templates, IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 3, pp. 257- 267.
- Calinon, S.; Billard, A. (2005), Recognition and reproduction of gestures using a probabilistic framework combining PCA, ICA and HMM, in Proceedings of the International Conference on Machine Learning (ICML), Bonn, Germany
- Cheung, G. K. M.; Baker, S.; Kanade, T. (2003) Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture, in Computer Vision and Pattern Recognition.
- CSEM (2006) Swissranger website. http://www.swissranger.ch
- Demirdjian, D.; Darrell, T. (2002) 3-d articulated pose tracking to untethered deictic references, in Multimodel Interfaces, pp. 267-272.
- Demirdjian, D. (2003) Enforcing constraints for human body tracking, in Conference on Computer Vision and Pattern Recognition, Workshop Vol. 9, Madison, Wisconsin, USA, pp. 102-109.
- Deutscher, J.; Blake, A.; Reid, I. (2000), Articulated body motion capture by annealed particle filtering, in Computer Vision and Pattern Recognition (CVPR), Hilton Head, USA, pp. 2126-2133.
- Ehrenmann, M.; Zöllner, R.; Rogalla, O.; Vacek, S.; Dillmann, R. (2003). Observation in programming by demonstration: Training and execution environment, in Proceedings of Third IEEE International Conference on Humanoid Robots, Karlsruhe and Munich, Germany.
- Fritsch, J.; Lang, S.; Kleinehagenbrock, M.; Fink, G. A.; Sagerer, G. (2002) Improving adaptive skin color segmentation by incorporating results from face detection, in Proc. IEEE Int. Workshop on Robot and Human Interactive Communication (ROMAN). Berlin, Germany
- Fritsch, J.; Kleinehagenbrock, M.; Lang, S.; Plötz, T.; Fink, G.A.; Sagerer, G. (2003), Multi- modal anchoring for human-robot-interaction, Robotics and Autonomous Systems, Special issue on Anchoring Symbols to Sensor Data in Single and Multiple Robot Systems, vol. 43, no. 2-3, pp. 133-147.
- Gavrila, D. M. (1999) The visual analysis of human movement: A survey, Computer Vision and Image Understanding, vol. 73, no. 1, pp. 82-98.
- H|Anim (2003), Information technology -Computer graphics and image processing -Humanoid animation (H-Anim), Annex B, ISO/IEC FCD 19774, Humanoid Animation Working Group, Specification.
- Horn, B. K. P. (1987) Closed-form solution of absolute orientation using unit quaternions, Optical Society of America Journal A, vol. 4, pp. 629-642, Apr. 1987.
- Knoop, S.; Vacek, S. & Dillmann, R. (2005). Modelling Joint Constraints for an Articulated 3D Human Body Model with Artificial Correspondences in ICP, Proceedings of the International Conference on Humanoid Robots (Humanoids 2005), Tsukuba, Japan, December 2005, IEEE-RAS
- Knoop, S.; Vacek, S. & Dillmann, R. (2006). Sensor Fusion for 3D Human Body Tracking with an Articulated 3D Body Model. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, May 2006
- Knoop, S.; Vacek, S. & Dillmann, R. (2006). Sensor fusion for model based 3D tracking. Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Heidelberg, Germany, September 2006
- Moeslund, T. B.; Granum, E. (2001) A survey of computer vision-based human motion capture, Computer Vision and Image Understanding, vol. 81, no. 3, pp. 231-268.
- Ramanan, D.; Forsyth, D. A. (2003) Finding and tracking people from the bottom up, in Computer Vision and Pattern Recognition, vol. 2, 18-20 June, pp. II-467-II-474.
- Sidenbladh, H. (2001) Probabilistic tracking and reconstruction of 3d human motion in monocular video sequences, Ph.D. dissertation, KTH, Stockholm, Sweden.
- Wang, L.; Hu, W.; Tan, T. (2004) Recent developments in human motion analysis, Pattern Recognition, vol. 36, no. 3, pp. 585-601, 2003.and Electronics Engineers.