Academia.eduAcademia.edu

Outline

Κ-Anti-Fuzzy Subgroup

2020, Advances in Mathematics: Scientific Journal

https://doi.org/10.37418/AMSJ.9.4.4

Abstract

An overview of κ-anti fuzzy subgroup of a group is presented and some related basic results are approached in this paper. In addition, the κ-anti fuzzy subgroup of a group is characterized. Moreover some properties of κ-anti fuzzy subgroup under group homomorphism are investigated.

References (13)

  1. S. K. BHAKAT: On the definitions of fuzzy group, Fuzzy. Set. Syst., 51(1992), 235-241.
  2. R. BISWAS: Fuzzy subgroups ans anti Fuzzy subgroups, Fuzzy. Set. Syst., 35(1990), 121- 124.
  3. B. DONG: Direct product of anti-fuzzy subgroups, J Shaoxing Teachers College in Chinese., 5(1992), 29-34.
  4. W. LIU: Fuzzy invariant subgroups and fuzzy ideals, Fuzzy. Set. Syst., 59(1993), 205-210.
  5. RAJESHKUMAR: Fuzzy Algebra, Publication Division, University of Delhi, 1993.
  6. A. ROSENFELD: Fuzzy groups, J. Math. Anal. And Appl., 35(1971), 512-517.
  7. P. K. SHARMA: α-fuzzy subgroups, Int. J. Fuzzy. Math. Syst., 3(1) (2013), 47-59.
  8. Z. SHEN: The anti-fuzzy subgroup of a group, J. Liaoning Normat University in Chinese (Nat. Sci.), 18(2) (1995), 99-101.
  9. K. SOWMYA, S. M. JOSE: λ-fuzzy subgroup, Int. J. Recent Tech. Engg., 7(6) (2019), 780-784.
  10. B. YAO, (λ, µ)-fuzzy normal subgroups and (λ, µ)-fuzzy quotients subgroups, J. Fuzzy. Math., 13(3) (2005), 695-705.
  11. B. YAO: (λ, µ)-fuzzy subrings and (λ, µ)-fuzzy ideals, J. Fuzzy. Math., 15(4) (2007), 981- 987.
  12. Y. FENG, B. YAO: On (λ, µ)-anti-fuzzy subgroups, J. Inequal. Appl., 78 (2012). https://doi.org/10.1186/1029-242X-2012-78.
  13. L. A. ZADEH: Fuzzy Set, Inf. Cont,. 8 (1965), 338-353. DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE, CHIDAMBARAM-608102 TAMIL NADU, INDIA