Academia.eduAcademia.edu

Outline

Extended curvatures and Lie pseudoalgebras

ITM Web of Conferences

https://doi.org/10.1051/ITMCONF/20224902007

Abstract

The aim of the paper is to prove that if some extended curvatures on a preinfinitesimal module L, considered in the paper, vanish, then the derived preinfinitesimal module L(1) is a Lie pseudoalgebra. Two non-trivial examples are given. The first example is when L0 is an infinitesimal module and the second one is when L1 is a preinfinitesimal module.

References (26)

  1. Anastasiei M., Banach Lie algebroids and Dirac structures, Balk. J. Geom. Appl. 2013, 18.1, 1-11.
  2. Anastasiei M., Sandovici A., Banach Dirac bundles. Int. J. Geom. Meth. Mod. Phys. 2013, 10.07: 1350033.
  3. Balcerzak B., Symmetric brackets induced by connections with totally skew-symmetric torsion on skew-symmetric algebroids, arXiv preprint arXiv:2001.07390 (2020).
  4. Cabau P., Pelletier F., Almost Lie structures on an anchored Banach bundle, J. Geom. Phys. 2012, 62.11, 2147-2169.
  5. Chen Z., Liu Z-J., On (co-) morphisms of Lie pseudoalgebras and groupoids, J. Algebra 316.1 (2007): 1-31.
  6. Da Silva A.C., Weinstein A., Geometric models for noncommutative algebras, Vol. 10. AMS, 1999.
  7. Fernandes R.L., Lie algebroids, holonomy and characteristic classes, Adv. in Mathemat- ics 2002, 170.1, 119-179.
  8. Grabowski J., Brackets, Int. J. Geom. Meth. Mod. Phys. 2013, 10.08, 1360001.
  9. Grabowski J., and Jóźwikowski M., Pontryagin maximum principle on almost Lie alge- broids, SIAM J. Control Optim. 2011, 49.3 (2011): 1306-1357.
  10. Grabowski J., Khudaverdyan D., Poncin N.. The supergeometry of Loday algebroids, arXiv preprint arXiv:1103.5852 (2011).
  11. Grabowska K., Grabowski J., Dirac algebroids in Lagrangian and Hamiltonian mechan- ics, J. Geom. Phys. 2011, 61.11, 2233-2253.
  12. Huebschmann J., Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Annales de l'institut Fourier 1998, 48.2.
  13. Mackenzie K., General theory of Lie groupoids and Lie algebroids, Cambridge Univ.Press., London, 2005.
  14. Mackenzie K., Lie algebroids and Lie pseudoalgebras, Bulletin of the London Mathe- matical Society 1995 27.2, 97-147.
  15. Marle C-M., Differential calculus on a Lie algebroids and Poisson manifolds, arXiv preprint. arXiv:0804.2451v2 (2008).
  16. Popescu M., Popescu P., Geometric objects defined by almost Lie structures, Banach Center Publications 2000, 54, 217-233.
  17. Popescu M., Popescu P., Almost Lie algebroids and characteristic classes, SIGMA 2019, 15, 021.
  18. Popescu M., Popescu P., Extended Curvatures and Lie Algebroids, Symmetry 2022, 14.7, 1375.
  19. Popescu P., On the geometry of relative tangent spaces, Rev. roum. math. pures appl. 1992, 37, 8, 727-733.
  20. Popescu P., Almost Lie structures, derivations and R-curvature on relative tangent spaces, Rev. roum. math. pures appl. 1992, 37, 9, 779-789.
  21. Popescu P., Categories of modules with differentials, J. Algebra 1996, 185, 50-73.
  22. Popescu P" The Lie pseudoalgebra of an anchored module, Algebra Colloquium 2006, 13.02.
  23. Popescu P., Popescu M., Anchored vector bundles and Lie algebroids, Banach Center Publications 2000, 54, 51-69.
  24. Popescu P., Poisson structures on almost complex Lie algebroids, Int. J. Geom. Meth. Mod. Phys. 2014, 11.08, 1450069.
  25. Pradines J., Théorie de Lie pour les groupoïdes di fférentiables. Calcul différentiel dans la cat égorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris 1967, 264, 245-248.
  26. Vulcu V.-A., Dirac Structures on Banach Lie algebroids. Analele Stiintifice ale Univ. Ovidius Constanta, Ser. Mat. 2014, 22.3: 219-228.