Dark Neutrino Portal to Explain MiniBooNE Excess
2018, Physical Review Letters
Abstract
We present a novel framework that provides an explanation to the long-standing excess of electronlike events in the MiniBooNE experiment at Fermilab. We suggest a new dark sector containing a dark neutrino and a dark gauge boson, both with masses between a few tens and a few hundreds of MeV. Dark neutrinos are produced via neutrino-nucleus scattering, followed by their decay to the dark gauge boson, which in turn gives rise to electron-like events. This mechanism provides an excellent fit to MiniBooNE energy spectra and angular distributions.
References (44)
- J. J. Simpson and A. Hime, Phys. Rev. D39, 1825 (1989).
- T. Adam et al. (OPERA), JHEP 10, 093 (2012), arXiv:1109.4897 [hep-ex].
- G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau, Phys. Rev. D83, 073006 (2011), arXiv:1101.2755 [hep-ex].
- C. Giunti and M. Laveder, Phys. Rev. C83, 065504 (2011), arXiv:1006.3244 [hep-ph].
- A. Aguilar-Arevalo et al. (LSND), Phys. Rev. D64, 112007 (2001), arXiv:hep-ex/0104049 [hep-ex].
- A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 98, 231801 (2007), arXiv:0704.1500 [hep-ex].
- A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 102, 101802 (2009), arXiv:0812.2243 [hep-ex].
- A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 105, 181801 (2010), arXiv:1007.1150 [hep-ex].
- A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 110, 161801 (2013), arXiv:1303.2588 [hep-ex].
- S. N. Gninenko, Phys. Rev. Lett. 103, 241802 (2009), arXiv:0902.3802 [hep-ph].
- Y. Bai, R. Lu, S. Lu, J. Salvado, and B. A. Stefanek, Phys. Rev. D93, 073004 (2016), arXiv:1512.05357 [hep- ph].
- J. Liao and D. Marfatia, Phys. Rev. Lett. 117, 071802 (2016), arXiv:1602.08766 [hep-ph].
- M. Carena, Y.-Y. Li, C. S. Machado, P. A. N. Machado, and C. E. M. Wagner, Phys. Rev. D96, 095014 (2017), arXiv:1708.09548 [hep-ph].
- J. Asaadi, E. Church, R. Guenette, B. J. P. Jones, and A. M. Szelc, Phys. Rev. D97, 075021 (2018), arXiv:1712.08019 [hep-ph].
- G. H. Collin, C. A. Argüelles, J. M. Conrad, and M. H. Shaevitz, Nucl. Phys. B908, 354 (2016), arXiv:1602.00671 [hep-ph].
- S. Gariazzo, C. Giunti, M. Laveder, and Y. F. Li, JHEP 06, 135 (2017), arXiv:1703.00860 [hep-ph].
- M. Dentler, A. Hernández-Cabezudo, J. Kopp, P. Machado, M. Maltoni, I. Martinez-Soler, and T. Schwetz, (2018), arXiv:1803.10661 [hep-ph].
- A. A. Aguilar-Arevalo et al. (MiniBooNE), (2018), arXiv:1805.12028 [hep-ex].
- In principle, the mechanism proposed here could provide an explanation of the LSND anomaly. As we will show, the MiniBooNE excess in our framework is induced by a novel neutral current scattering in which neutrinos up- scatter to heavy neutrinos followed by their decays to a collimated e + e -pair. Such scattering could kick out a neutron from Carbon in LSND, and thus provide the key signature in inverse beta decay. However, a reliable analysis of LSND would require detailed experimental information and is beyond the scope of this manuscript.
- To avoid confusion with the vast literature on ster- ile neutrino models and numerous variants (see e.g. Refs. [31, 35, 40-44]), we refer to particles in this sec- tor as dark.
- B. Holdom, Phys. Lett. 166B, 196 (1986).
- J. Engel, Phys. Lett. B264, 114 (1991).
- A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014), arXiv:1310.1921 [hep-ph].
- J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP 07, 079 (2014), arXiv:1405.0301 [hep- ph].
- M. Martini, M. Ericson, and G. Chanfray, Phys. Rev. D85, 093012 (2012), arXiv:1202.4745 [hep-ph].
- A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D79, 072002 (2009), arXiv:0806.1449 [hep-ex].
- P. Ilten, Y. Soreq, M. Williams, and W. Xue, JHEP 06, 004 (2018), arXiv:1801.04847 [hep-ph].
- A. Atre, T. Han, S. Pascoli, and B. Zhang, JHEP 05, 030 (2009), arXiv:0901.3589 [hep-ph].
- A. de Gouvêa and A. Kobach, Phys. Rev. D93, 033005 (2016), arXiv:1511.00683 [hep-ph].
- G. Bernardi et al., Phys. Lett. B203, 332 (1988).
- A. Vaitaitis et al. (NuTeV, E815), Phys. Rev. Lett. 83, 4943 (1999), arXiv:hep-ex/9908011 [hep-ex].
- A. M. Cooper-Sarkar et al. (WA66), Phys. Lett. 160B, 207 (1985).
- E. Gallas et al. (FMMF), Phys. Rev. D52, 6 (1995).
- P. Vilain et al. (CHARM II), Phys. Lett. B343, 453 (1995), [Phys. Lett.B351,387(1995)].
- A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 120, 221801 (2018), arXiv:1802.02965 [hep-ex].
- A. A. Aguilar-Arevalo et al. (MiniBooNE DM), (2018), arXiv:1807.06137 [hep-ex].
- M. Antonello et al. (LAr1-ND, ICARUS-WA104, Micro- BooNE), (2015), arXiv:1503.01520 [physics.ins-det].
- A. Abada, D. Bečirević, O. Sumensari, C. Weiland, and R. Zukanovich Funchal, Phys. Rev. D95, 075023 (2017), arXiv:1612.04737 [hep-ph].
- E. Bertuzzo, S. Jana, P. A. N. Machado, and R. Zukanovich Funchal, (2018), arXiv:1808.02500 [hep- ph].
- C. H. Albright, Lett. Nuovo Cim. 3, 71 (1972).
- E. W. Kolb and M. S. Turner, Phys. Rev. D36, 2895 (1987).
- S. Hannestad and G. Raffelt, Phys. Rev. D72, 103514 (2005), arXiv:hep-ph/0509278 [hep-ph].
- X. Chu, B. Dasgupta, M. Dentler, J. Kopp, and N. Sa- viano, (2018), arXiv:1806.10629 [hep-ph].
- A. Abada, N. Bernal, M. Losada, and X. Marcano, (2018), arXiv:1807.10024 [hep-ph].