Academia.eduAcademia.edu

Outline

Dark Neutrino Portal to Explain MiniBooNE Excess

2018, Physical Review Letters

Abstract

We present a novel framework that provides an explanation to the long-standing excess of electronlike events in the MiniBooNE experiment at Fermilab. We suggest a new dark sector containing a dark neutrino and a dark gauge boson, both with masses between a few tens and a few hundreds of MeV. Dark neutrinos are produced via neutrino-nucleus scattering, followed by their decay to the dark gauge boson, which in turn gives rise to electron-like events. This mechanism provides an excellent fit to MiniBooNE energy spectra and angular distributions.

References (44)

  1. J. J. Simpson and A. Hime, Phys. Rev. D39, 1825 (1989).
  2. T. Adam et al. (OPERA), JHEP 10, 093 (2012), arXiv:1109.4897 [hep-ex].
  3. G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau, Phys. Rev. D83, 073006 (2011), arXiv:1101.2755 [hep-ex].
  4. C. Giunti and M. Laveder, Phys. Rev. C83, 065504 (2011), arXiv:1006.3244 [hep-ph].
  5. A. Aguilar-Arevalo et al. (LSND), Phys. Rev. D64, 112007 (2001), arXiv:hep-ex/0104049 [hep-ex].
  6. A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 98, 231801 (2007), arXiv:0704.1500 [hep-ex].
  7. A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 102, 101802 (2009), arXiv:0812.2243 [hep-ex].
  8. A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 105, 181801 (2010), arXiv:1007.1150 [hep-ex].
  9. A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 110, 161801 (2013), arXiv:1303.2588 [hep-ex].
  10. S. N. Gninenko, Phys. Rev. Lett. 103, 241802 (2009), arXiv:0902.3802 [hep-ph].
  11. Y. Bai, R. Lu, S. Lu, J. Salvado, and B. A. Stefanek, Phys. Rev. D93, 073004 (2016), arXiv:1512.05357 [hep- ph].
  12. J. Liao and D. Marfatia, Phys. Rev. Lett. 117, 071802 (2016), arXiv:1602.08766 [hep-ph].
  13. M. Carena, Y.-Y. Li, C. S. Machado, P. A. N. Machado, and C. E. M. Wagner, Phys. Rev. D96, 095014 (2017), arXiv:1708.09548 [hep-ph].
  14. J. Asaadi, E. Church, R. Guenette, B. J. P. Jones, and A. M. Szelc, Phys. Rev. D97, 075021 (2018), arXiv:1712.08019 [hep-ph].
  15. G. H. Collin, C. A. Argüelles, J. M. Conrad, and M. H. Shaevitz, Nucl. Phys. B908, 354 (2016), arXiv:1602.00671 [hep-ph].
  16. S. Gariazzo, C. Giunti, M. Laveder, and Y. F. Li, JHEP 06, 135 (2017), arXiv:1703.00860 [hep-ph].
  17. M. Dentler, A. Hernández-Cabezudo, J. Kopp, P. Machado, M. Maltoni, I. Martinez-Soler, and T. Schwetz, (2018), arXiv:1803.10661 [hep-ph].
  18. A. A. Aguilar-Arevalo et al. (MiniBooNE), (2018), arXiv:1805.12028 [hep-ex].
  19. In principle, the mechanism proposed here could provide an explanation of the LSND anomaly. As we will show, the MiniBooNE excess in our framework is induced by a novel neutral current scattering in which neutrinos up- scatter to heavy neutrinos followed by their decays to a collimated e + e -pair. Such scattering could kick out a neutron from Carbon in LSND, and thus provide the key signature in inverse beta decay. However, a reliable analysis of LSND would require detailed experimental information and is beyond the scope of this manuscript.
  20. To avoid confusion with the vast literature on ster- ile neutrino models and numerous variants (see e.g. Refs. [31, 35, 40-44]), we refer to particles in this sec- tor as dark.
  21. B. Holdom, Phys. Lett. 166B, 196 (1986).
  22. J. Engel, Phys. Lett. B264, 114 (1991).
  23. A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014), arXiv:1310.1921 [hep-ph].
  24. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP 07, 079 (2014), arXiv:1405.0301 [hep- ph].
  25. M. Martini, M. Ericson, and G. Chanfray, Phys. Rev. D85, 093012 (2012), arXiv:1202.4745 [hep-ph].
  26. A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D79, 072002 (2009), arXiv:0806.1449 [hep-ex].
  27. P. Ilten, Y. Soreq, M. Williams, and W. Xue, JHEP 06, 004 (2018), arXiv:1801.04847 [hep-ph].
  28. A. Atre, T. Han, S. Pascoli, and B. Zhang, JHEP 05, 030 (2009), arXiv:0901.3589 [hep-ph].
  29. A. de Gouvêa and A. Kobach, Phys. Rev. D93, 033005 (2016), arXiv:1511.00683 [hep-ph].
  30. G. Bernardi et al., Phys. Lett. B203, 332 (1988).
  31. A. Vaitaitis et al. (NuTeV, E815), Phys. Rev. Lett. 83, 4943 (1999), arXiv:hep-ex/9908011 [hep-ex].
  32. A. M. Cooper-Sarkar et al. (WA66), Phys. Lett. 160B, 207 (1985).
  33. E. Gallas et al. (FMMF), Phys. Rev. D52, 6 (1995).
  34. P. Vilain et al. (CHARM II), Phys. Lett. B343, 453 (1995), [Phys. Lett.B351,387(1995)].
  35. A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 120, 221801 (2018), arXiv:1802.02965 [hep-ex].
  36. A. A. Aguilar-Arevalo et al. (MiniBooNE DM), (2018), arXiv:1807.06137 [hep-ex].
  37. M. Antonello et al. (LAr1-ND, ICARUS-WA104, Micro- BooNE), (2015), arXiv:1503.01520 [physics.ins-det].
  38. A. Abada, D. Bečirević, O. Sumensari, C. Weiland, and R. Zukanovich Funchal, Phys. Rev. D95, 075023 (2017), arXiv:1612.04737 [hep-ph].
  39. E. Bertuzzo, S. Jana, P. A. N. Machado, and R. Zukanovich Funchal, (2018), arXiv:1808.02500 [hep- ph].
  40. C. H. Albright, Lett. Nuovo Cim. 3, 71 (1972).
  41. E. W. Kolb and M. S. Turner, Phys. Rev. D36, 2895 (1987).
  42. S. Hannestad and G. Raffelt, Phys. Rev. D72, 103514 (2005), arXiv:hep-ph/0509278 [hep-ph].
  43. X. Chu, B. Dasgupta, M. Dentler, J. Kopp, and N. Sa- viano, (2018), arXiv:1806.10629 [hep-ph].
  44. A. Abada, N. Bernal, M. Losada, and X. Marcano, (2018), arXiv:1807.10024 [hep-ph].