Academia.eduAcademia.edu

Outline

Remote Sensing of Ocean and Coastal Environments

2021, Remote Sensing of Ocean and Coastal Environments

https://doi.org/10.1016/B978-0-12-819604-5.00003-2

Abstract
sparkles

AI

Remote sensing plays a critical role in the assessment of phytoplankton biomass in coastal and ocean environments, which is essential for understanding marine ecosystems. The study highlights the use of multispectral satellite images to monitor phytoplankton dynamics, emphasizing its effectiveness in observing seasonal variations and interactions with environmental factors such as salinity, temperature, and nutrient levels. The findings suggest that remote sensing offers a valuable method for estimating chlorophyll-a concentrations, providing insights into the productivity and diversity of aquatic systems over large spatial and temporal scales.

References (42)

  1. Ahn, Y.H., Shanmugam, P., Moon, J.E., Ryu, J.H., 2008. Satellite remote sensing of a low salinity waters plume in the East China Sea. Ann. Geophys. 26, 2019e2035.
  2. Balzano, S., Ellis, A.V., Lan, C.L., Leterme, S.C., 2015. Seasonal changes in phytoplankton on the Northeastern shelf of Kangaroo Island (South Australia) in 2012 and 2013. Oceanologia 57, 251e262.
  3. Barale, V., 2010. Oceanography From Space: Revisited. Springer, Ispra, pp. 237e238.
  4. Beaver, J.R., Crisman, T.L., 1991. Temporal variability in algal biomass and primary productivity in Florida lakes relative to longitudinal gradients, organic colour and trophic states. Hydrobiologia 224, 89e97.
  5. Behrenfeld, M.J., Boss, E., 2006. Beam attenuation and phytoplankton (chl-a) concentration as alter- native optical indices of phytoplankton biomass. J. Mar. Res. 64, 431e451.
  6. Bosart, L.F., Sprigg, W.A., 1998. The Meteorological Buoy and Coastal Marine Automated Network for the United States. National Academies Press, Washington, DC.
  7. Burrage, D., Wesson, J., 2008. Deriving sea surface salinity and density variations from satellite and aircraft microwave radiometer measurements: application to coastal plumes using STARRS. IEEE Trans. Geosci. Remote Sens. 46 (3), 765e785. Chapter 3 Ocean remote sensing for seasonal predictability 43
  8. Chauhan, P., Mohan, M., Sarngi, R.K., Kumari, B., Nayak, S., Matondkar, S.G.P., 2002. Surface phyto- plankton (chl-a) a estimation in the Arabian Sea using IRS-P4 Ocean Colour Monitor (OCM) satellite data. Int. J. Remote Sens. 23 (8), 1663e1676.
  9. Chen, H., Quan, W., 2013. An improved algorithm for retrieving phytoplankton (chl-a)-a from the Yellow River Estuary using MODIS imagery. Environ. Monit. Assess. 185, 2243e2255.
  10. Dey, S., Singh, R.P., 2003. Comparison of phytoplankton (chl-a) distributions in the Northeastern Arabian Sea and Southern Bay of Bengal using IRS P4 ocean color monitor data. Remote Sens. Environ. 85, 424e428.
  11. Desortiva, B., 1981. Relationship between phytoplankton (chl-a) concentration and phytoplankton biomass in several reservoirs in Czechoslovakia. Int. Revue Ges. Hydrobiol. 66, 153e169.
  12. Geider, R., MacIntyre, H., Kana, T., 1997. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the phytoplankton (chl-a) a: carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 148, 187e200.
  13. Kaliraj, S., Chandrasekar, N., Magesh, N.S., 2014a. Multispectral image analysis of suspended sediment concentration along the Southern coast of Kanyakumari, Tamil Nadu, India. J. Coast. Sci. 1 (1), 63e71. ISSN: 2348 e 6740.
  14. Kaliraj, S., 2016a. Geospatial Analysis of Coastal Geomorphological Vulnerability on South West Coast of Kanyakumari Using Remote Sensing Technology. Unpublished Ph.D. Thesis. ManonmaniamSundaranar University, Tirunelveli, pp. 83e110.
  15. Kaliraj, S., Chandrasekar, N., 2012. Geo-processing model on coastal vulnerability index to explore risk zone along the South West coast of Tamilnadu, India. Int. J. Earth Sci. Eng. 5 (5), 1138e1147.
  16. Kaliraj, S., Chandrasekar, N., Magesh, N.S., 2014b. Impacts of wave energy and littoral currents on shoreline erosion/accretion along the South-West coast of Kanyakumari, Tamil nadu using DSAS and geospatial Technology. Environ. Earth Sci. https://doi.org/10.1007/s12665-013-2845-6.
  17. Kaliraj, S., Chandrasekar, N., Magesh, N.S., 2013. Evaluation of coastal erosion and accretion processes along the SouthWest coast of Kanyakumari, Tamil Nadu using geospatial techniques. Arab. J. Geosci. https://doi.org/10.1007/s12517-013-1216-7.
  18. Kaliraj, S., Chandrasekar, N., Ramachandran, K.K., 2019a. Phytoplankton (chl-a) biomass seasonal variability in the gulf of Mannar, South India: a remote sensing perspective. In: Kumar, P., et al. (Eds.), Applications and Challenges of Geospatial Technology. https://doi.org/10.1007/978-3-319- 99882-4_5.
  19. Kaliraj, S., Chandrasekar, N., Ramachandran, K.K., 2016. Mapping of coastal landforms and volumetric change analysis in the South West coast of Kanyakumari, South India using remote sensing and GIS techniques. Egypt. J. Remote Sens. & Space Sci. https://doi.org/10.1016/j.ejrs.2016.12.006.
  20. Kaliraj, S., Chandrasekar, N., Ramachandran, K.K., Selvakumar, S., 2019b. Seawater intrusion vulnera- bility in the coastal aquifers of Southern Indiadan appraisal of the GALDIT model, parameters' sensitivity, and hydrochemical indicators. Environ. Sci. Pollut. Res. 26, 9755e9784. https://doi.org/ 10.1007/s11356-019-04401-0.
  21. Kaliraj, S., Chandrasekar, N., Ramachandran, K.K., Srinivas, Y., Saravanan, S., 2017. Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. Egypt. J. Remote Sens. & Space Sci. https://doi.org/10.1016/j.ejrs.2017.04.003.
  22. Kaliraj, S., Chandrasekar, N., Simon Peter, T., Selvakumar, S., Magesh, N.S., 2015. Mapping of coastal aquifer vulnerable zone in the South West coast of Kanyakumari, South India, using GIS-based DRASTIC model. Environ. Monit. Assess. https://doi.org/10.1007/s10661-014-4073-2.
  23. Lee, Z., Carder, K.L., 2002. Effect of spectral band numbers on the retrieval of water column and band bottom properties from ocean color data. Appl. Opt. 41, 2191e2201.
  24. Nagamani, P.V., Chauhan, P., Dwivedi, R.M., 2008. Development of chlorophyll-a algorithm for ocean colour monitor onboard OCEANSAT-2 satellite. IEEE Geosci. Remote Sens. Lett. 5 (3), 527e531.
  25. Nagamani, P.V., Shikhakolli, R., Chauhan, P., 2011. Phytoplankton variability in the Bay of Bengal during winter monsoon using Oceansat-1Ocean Colour Monitor Data. J. Indian Soc. Remote Sens. 39 (1), 117e126.
  26. O'Reilly, J.E., Maritorena, S., O'Brien, M.C., Siegel, D.A., Toole, D., Menzies, et al., 2000. SeaWiFS Postlaunch calibration and validation Analyses. In: Hooker, S.B., Firestone, E.R. (Eds.), Part 3. NASA Tech. Memo. 2000-206892, 11. NASA Goddard Space Flight Center, Greenbelt, Maryland, pp. 49e58.
  27. Palmer, S.C.J., Odermatt, D., Hunter, P.D., Brockmann, C., Presing, M., Balzter, H., Toth, V.R., 2015. Satellite remote sensing of phytoplankton phenology in Lake Balaton using 10 years of MERIS ob- servations. Remote Sens. Environ. 158, 441e452.
  28. Reinart, A., Kutser, T., 2006. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ. 102 (1-2), 74e85. https://doi.org/10.1016/j.rse.2006. 02.013.
  29. Sarangi, R.K., 2011. Impact of cyclones on the Bay of Bengal phytoplankton (chl-a) variability using remote sensing satellites. Indian J. Geo-Mar. Sci. 40 (6), 794e801.
  30. Sarangi, R.K., Nayak, S., Panigrahy, R.C., 2008. Monthly variability of phytoplankton (chl-a) and asso- ciated physical parameters in the Southwest Bay of Bengal waters using remote sensing data. Indian J. Mar. Sci. 37 (3), 256e266.
  31. Siegel, D., et al., 2013. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135, 77e91.
  32. Solanki, H.U., Dwivedi, R.M., Nayak, S.R., Jadeja, J.V., Thakar, D.B., Dave, H.B., Patel, M.I., 2001. Application of Ocean Colour Monitor phytoplankton (chl-a) and AVHRR SST for fishery forecast: preliminary validation results off Gujarat coast, Northwest coast of India. Indian J. Mar. Sci. 30, 132e138.
  33. Vaillancourt, R.D., Brown, C.W., Guillard, R.R.L., Balch, W.M., 2004. Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy. J. Plankton Res. 26, 191e212.
  34. Wallhead, P.J., Garc ¸on, V.C., Casey, J.R., Lomas, M.W., 2014. Long-term variability of phytoplankton carbon biomass in the Sargasso Sea. Glob. Biogeochem. Cycles 28, 825e841. Further reading Afdal, 2014. Chl-aVariation in Cirebon Waters and Its Relationship With Nutrient Concentration JurnalOseanologi dan Limnologi di Indonesia. LIPI, Jakarta, Indonesia.
  35. Buditama, G., Damayanti, A., Pin, G.T., 2017. Identifying distribution of chl-aConcentration using Landsat 8 OLI on marine waters area of cirebon. IOP Conf. Ser. Earth Environ. Sci. 98. https://doi. org/10.1088/1755-1315/98/1/012040, 012040.
  36. Geiger, F., Grossi, D., Trembanis, C., Kohut, T., Oliver, J., 2013. Satellite-derived coastal ocean and estuarine salinity in the Mid-Atlantic. Continent. Shelf Res. 63, S235eS242.
  37. Hanintyo, R., Susilo, E., 2016. Comparison of chl-aMeasurement using multi spatial imagery and numerical model in bali strait. J. Front. Mar. Sci. 4 (Scopus).
  38. Jaelani, L.M., Limehuwey, R., Kurniadin, N., Pamungkas, A., Koenhardono, E.S., Sulisetyono, A., April 2016. Estimation of TSS and chl-a concentration from Landsat 8-OLI: the effect of atmosphere and retrieval algorithm, IPTEK. J. Technol. & Sci. 27 (1).
  39. Klemas, V., 2011. Remote sensing of sea surface salinity: an overview with case studies. J. Coast Res. 27 (5), 830e838. https://doi.org/10.2112/jcoastres-d-11-0006.1.
  40. Nurdin, S., Mustapha, M.A., Lihan, T., Zainuddin, M., 2017. Applicability of remote sensing oceano- graphic data in the detection of potential fishing grounds of Rastrelligerkanagurta in the archipelagic waters of Spermonde, Indonesia. J. Fish. Res. 196 (Scopus).
  41. Yadav, S., Yamashiki, Y., Susaki, J., Yamashita, Y., Ishikawa, K., 2019. Chlorophyll estimation of lake water and coastal water using Landsat-8 and Sentinel-2a Satellite,The international archives of the photogrammetry. Remote Sens. & Spat. Inf. Sci. XLII-3/W7.
  42. Yoshino Watanabe, F.S., Alca ˆntara, E., Rodrigues, T.W., Imai, N.N., Barbosa, C.C., Rotta, L.H., 2015. Estimation of chl-aConcentration and the trophic state of the Barra Bonita hydroelectric reservoir using OLI/Landsat-8 images. Int. J. Environ. Res. Public Health 2015 12, 10391e10417. https://doi. org/10.3390/ijerph120910391.