Denominators of cluster variables
2009, Journal of the London Mathematical Society
https://doi.org/10.1112/JLMS/JDN082Abstract
Associated to any acyclic cluster algebra is a corresponding triangulated category known as the cluster category. It is known that there is a one-to-one correspondence between cluster variables in the cluster algebra and exceptional indecomposable objects in the cluster category inducing a correspondence between clusters and cluster-tilting objects. Fix a cluster-tilting object T and a corresponding initial cluster. By the Laurent phenomenon, every cluster variable can be written as a Laurent polynomial in the initial cluster. We give conditions on T equivalent to the fact that the denominator in the reduced form for every cluster variable in the cluster algebra has exponents given by the dimension vector of the corresponding module over the endomorphism algebra of T .
References (25)
- A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1-52.
- K. Bongartz, Tilted algebras, Representations of algebras (Puebla, 1980), Lecture Notes in Math., 903, Springer, Berlin-New York, 1981, (26-38).
- A. B. Buan, P. Caldero, B. Keller, R. J. Marsh, I. Reiten and G. Todorov, Appendix to Clusters and seeds in acyclic cluster algebras, Proc. Amer. Math. Soc. 135, No. 10 (2007), 3049-3060.
- A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc., 359, no. 1 (2007), 323-332.
- A. B. Buan, R. J. Marsh and I. Reiten, Cluster mutation via quiver representations, preprint arxiv:math.RT/0412077v2, 2004, to appear in Comment. Math. Helv.
- A. B. Buan, R. J. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Advances in Mathematics 204 (2) (2006), 572-618.
- A. B. Buan, R. J. Marsh, I. Reiten and G. Todorov, Clusters and seeds in acyclic cluster algebras, Proc. Amer. Math. Soc. 135, No. 10 (2007), 3049-3060.
- P. Caldero, F. Chapoton and R. Schiffler Quivers with relations arising from clusters (An case), Transactions of the American Mathematical Society 358 (2006), 1347-1364.
- P. Caldero, F. Chapoton and R. Schiffler Quivers with relations and cluster-tilted algebras, Algebras and Representation Theory, 9, No. 4 , (2006), 359-376.
- P. Caldero and B. Keller, From triangulated categories to cluster algebras, preprint math.RT/0506018 (2005), to appear in Invent. Math.
- P. Caldero and B. Keller, From triangulated categories to cluster algebras II, Ann. Sci. Ecole Norm. Sup, 4eme serie, 39, (2006), 983-1009.
- G. Cerulli Irelli, PhD-thesis in preparation: Structural theory of rank three cluster algebras of affine type.
- S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529.
- S. Fomin and A. Zelevinsky, Cluster Algebras II: Finite type classification, Invent. Math. 154(1) (2003), 63-121.
- S. Fomin and A. Zelevinsky, Cluster Algebras IV: Coefficients, Compositio Mathematica 143 (2007), 112-164.
- C. Fu and B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, preprint arXiv:0710.3152v1 [math.RT], 2007.
- D. Happel, Triangulated categories in the representation theory of finite-dimensional alge- bras, London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge (1988).
- D. Happel and L. Unger, Almost complete tilting modules, Proc. Amer. Math. Soc. 107 (3) (1989), 603-610.
- O. Kerner, Stable components of wild tilted algebras, J. Algebra 142 (1991), no. 1, 37-57.
- O. Kerner, Representations of wild quivers, Representation theory of algebras and related topics (Mexico City, 1994), 65-107, CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI, (1996).
- R. Marsh, M. Reineke and A. Zelevinsky, Generalized associahedra via quiver representa- tions, Trans. Amer. Math. Soc. 355 (2003), no. 1, 4171-4186.
- C. M. Ringel, Tame algebras and integral quadratic forms, Springer Lecture Notes in Math- ematics 1099 (1984).
- C. M. Ringel, The regular components of the Auslander-Reiten quiver of a tilted algebra, A Chinese summary appears in Chinese Ann. Math. Ser. A 9 (1988), no. 1, 102. Chinese Ann. Math. Ser. B 9 (1988), no. 1, 1-18.
- I. Reiten and G. Todorov, unpublished.
- H. Strauss, On the perpendicular category of a partial tilting module J. Algebra 144 (1991), no. 1, 43-66.