Academia.eduAcademia.edu

Outline

A New Version of the Price's Algorithm for Global Optimization

1997, Journal of Global Optimization

https://doi.org/10.1023/A:1008250020656

Abstract

We present an algorithm for finding a global minimum of a multimodal,multivariate function whose evaluation is very expensive, affected by noise andwhose derivatives are not available. The proposed algorithm is a new version ofthe well known Price's algorithm and its distinguishing feature is that ittries to employ as much as possible the information about the objectivefunction obtained at previous iterates.

References (22)

  1. L.C.W. Dixon and G.P. Szegö (1975), Towards Global Optimization 1, North-Holland, Amster- dam.
  2. L.C.W. Dixon and G.P. Szegö (1978), Towards Global Optimization 2, North-Holland, Amster- dam.
  3. R.Y. Rubinstein (1981), Simulation and the Monte Carlo Method, John Wiley & Son, New York.
  4. F. Archetti and F. Shoen (1984), A Survey on the Global Optimization Problem: General Theory and Computational Approaches, Annals of Operations Research, 1, 87-110.
  5. A. Törn and A. Žilinskas (1989), Global Optimization, Lecture Notes in Computer Science 350, Springer-Verlag, Berlin.
  6. A.H.G. Rinnooy Kan and G.H. Timmer (1989), Global Optimization, in G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (eds), Optimization, North-Holland, Amsterdam.
  7. R. Horst and H. Tuy (1990), Global Optimization, Springer Verlag, Berlin.
  8. F. Schoen (1991), Stochastic Techniques for Global Optimization: A Survey of Recent Advances, Journal of Global Optimization, 1, 207-228.
  9. C.A. Floudas and P.M. Pardalos (1992), Recent Advances in Global Optimization, Princeton University Press, Oxford.
  10. R.H. Horst and P.M. Pardalos (1995), Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht.
  11. F. Barone, L. Milano and G. Russo (1990), An Optimization Method for Solutions of Close Eclipsing Binaries, in Active Close Binaries, ed. C. Ibanoglu, Kluwer Academic Publishers, Dordrecht, 161-188.
  12. J. Nocedal (1992), Theory of Algorithms for Unconstrained Optimization, in: Acta Numerical 1992, ed. A. Iserles, Cambridge University Press, Cambridge, 199-242.
  13. M.J.D. Powell (1992), A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation, Numerical Analysis Reports, DAMTP 1992/NA5, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England.
  14. J.A. Nelder and R. Mead (1965), A Simplex Method for Function Minimization, Comput. J. 7, 308-313.
  15. W.L. Price (1978), A controlled random search procedure for global optimization, in Towards Global Optimization 2, L.C.W. Dixon and G.P. Szegö (eds.), North-Holland, Amsterdam.
  16. F. Barone, L. Milano and G. Russo (1990), The Wilson-Price Code Handbook, Università di Napoli, Dipartimento di Scienze Fisiche.
  17. F. Barone, C. Maceroni, L. Milano and G. Russo (1988), The Optimization of the Wilson- Devinney Method: An Application to CW Cas, Astron. Astrophys. 197, 347-353.
  18. F. Barone, L. Fiore, L. Milano and G. Russo (1993), Analysis of Contact Binary Systems: AA Ursae Majoris, V752 Centauri, AO Camelopardalis, and V677 Centauri, The Astrophysical Journal 407 237-251.
  19. R.E. Wilson (1979), Eccentric orbit generalization and simultaneous solution of binary star light and velocity curves, The Astrophysical Journal 234, 1054-1066.
  20. M.A. Wolfe (1978), Numerical Methods for Unconstrained Optimization, Van Nostrand Reinhold Company, New York.
  21. S. Lucidi and M. Piccioni, Random Tunneling by Means of Acceptance-Rejection Sampling for Global Optimization, J. Optim. Theory and Appl. 62, 255-278.
  22. L. Breiman and A. Cutler (1993), A deterministic algorithm for global optimization, Mathemat- ical Programming 58, 179-199.