A Note on Nondegenerate Matrix Polynomials
2018, Acta Mathematica Vietnamica
https://doi.org/10.1007/S40306-018-0261-4Abstract
In this paper, via Newton polyhedra, we define and study symmetric matrix polynomials which are nondegenerate at infinity. From this, we construct a class of (not necessarily compact) semialgebraic sets in R n such that for each set K in the class, we have the following two statements: (i) the space of symmetric matrix polynomials, whose eigenvalues are bounded on K, is described in terms of the Newton polyhedron corresponding to the generators of K (i.e., the matrix polynomials used to define K) and is generated by a finite set of matrix monomials; and (ii) a matrix version of Schmüdgen's Positivstellensätz holds: every matrix polynomial, whose eigenvalues are "strictly" positive and bounded on K, is contained in the preordering generated by the generators of K.
References (34)
- Benedetti, R., Risler, J.-J.: Real Algebraic and Semi-algebraic Sets. Hermann, Paris (1990)
- Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, vol. 36. Springer-Verlag, Berlin (1998)
- Cimprič, J.: Archimedean operator-theoretic Positivstellensätze. J. Funct. Anal. 260(10), 3132-3145 (2011)
- Cimprič, J.: Real algebraic geometry for matrices over commutative rings. J. Algebra 359, 89-103 (2012)
- Cimprič, J., Zalar, A.: Moment problems for operator polynomials. J. Math. Anal. Appl. 401(1), 307- 316 (2013)
- Gindikin, S.G.: Energy estimates connected with the Newton polyhedron. Trudy Moskov. Mat. Obšč 31, 189-236 (1974)
- Gindikin, S.G.: Trans. Moscow. Math. Soc. 31, 193-246 (1974)
- Hà, H.V., Ho, T.M.: Positive polynomials on nondegenerate basic semi-algebraic sets. Adv. Geom. 16(4), 497-510 (2016)
- Hà, H.V., Pha . m, T.S.: Genericity in polynomial optimization 3. Series on Optimization and Its Applications. World Scientific Publishing Co. Ltd., Hackensack, NJ (2017)
- Klep, I., Schweighofer, M.: Pure states, positive matrix polynomials and sums of hermitian squares. Indiana Univ. Math. J. 59(3), 857-874 (2010)
- Kurdyka, K., Michalska, M., Spodzieja, S.: Bifurcation values and stability of algebras of bounded polynomials. Adv. Geom. 14(4), 631-646 (2014)
- Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)
- Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. Emerging Appli- cations of Algebraic Geometry 157-270. IMA Vol. Math. Appl, vol. 149. Springer, New York (2009)
- Marshall, M.: Positive polynomials and sum of squares. Mathematical Surveys and Monographs 146. American Mathematical Society, Providence, RI (2008)
- Marshall, M.: Polynomials non-negative on a strip. Proc. Am. Math. Soc. 138(5), 1559-1567 (2010)
- Michalska, M.: Algebra of bounded polynomials on a set Zariski closed at infinity cannot be finitely generated. Bull. Sci. Math. 137(6), 705-715 (2013)
- Mikhalov, V.P.: The behaviour at infinity of a class of polynomials. Trudy Mat. lnst. Steklov. 91, 59-81 (1967)
- Mikhalov, V.P.: Proc. Steklov Inst. Math. 91, 61-82 (1967)
- Milnor, J.: Singular Points of Complex Hypersurfaces. Ann. Math. Studies 61, Princeton University Press, Princeton, N.J.: University of Tokyo Press, Tokyo (1968)
- Némethi, A., Zaharia, A.: Milnor fibration at infinity. Indag. Math. (N.S.) 3(3), 323-335 (1992)
- Nguyen, H., Powers, V.: Polynomials non-negative on strips and half-strips. J. Pure Appl. Algebra 216(10), 2225-2232 (2012)
- Pha . m, P.P., Pha . m, T.S.: Compactness criteria for real algebraic sets and Newton polyhedra. arXiv:1705.10917 (2017)
- Plaumann, D., Scheiderer, C.: The ring of bounded polynomials on a semi-algebraic set. Trans. Am. Math. Soc. 364(9), 4663-4682 (2012)
- Powers, V.: Positive polynomials and the moment problem for cylinders with compact cross-section. J. Pure Appl. Algebra 188(1-3), 217-226 (2004)
- Powers, V., Reznick, B.: Polynomials positive on unbounded rectangles. Positive polynomial in control, 151-163. Lect. Notes Control Inf. Sci, vol. 312. Springer, Berlin (2005)
- Prestel, A., Delzell, C.N.: Positive polynomials. From Hilbert's 17th problem to real algebra. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2001)
- Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969- 984 (1993)
- Scheiderer, C.: Sums of squares of regular functions on real algebraic varieties. Trans. Am. Math. Soc. 352(3), 1039-1069 (1999)
- Scheiderer, C.: Sums of squares on real algebraic curves. Math. Z. 245(4), 725-760 (2003)
- Scheiderer, C.: Sums of squares on real algebraic surfaces. Manuscripta Math. 119(4), 395-410 (2006)
- Scheiderer, C.: Positivity and sums of squares: a guide to recent results. Emerging applications of algebraic geometry, 271-324. IMA Vol. Math. Appl, vol. 149. Springer, New York (2009)
- Scherer, C.W., Hol, C.W.J.: Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program, Ser. B 107(1-2), 189-211 (2006)
- Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289(2), 203-206 (1991)
- Schweighofer, M.: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17(3), 920-942 (2006)