Extended Graded Modalities in Strategy Logic
2016, Electronic Proceedings in Theoretical Computer Science
https://doi.org/10.4204/EPTCS.218.1Abstract
Strategy Logic (SL) is a logical formalism for strategic reasoning in multi-agent systems. Its main feature is that it has variables for strategies that are associated to specific agents with a binding operator. We introduce Graded Strategy Logic (GRADEDSL), an extension of SL by graded quantifiers over tuples of strategy variables, i.e., "there exist at least g different tuples (x 1 , ..., x n) of strategies" where g is a cardinal from the set N ∪ {ℵ 0 , ℵ 1 , 2 ℵ 0 }. We prove that the model-checking problem of GRADEDSL is decidable. We then turn to the complexity of fragments of GRADEDSL. When the g's are restricted to finite cardinals, written GRADED N SL, the complexity of model-checking is no harder than for SL, i.e., it is non-elementary in the quantifier rank. We illustrate our formalism by showing how to count the number of different strategy profiles that are Nash equilibria (NE), or subgame-perfect equilibria (SPE). By analyzing the structure of the specific formulas involved, we conclude that the important problems of checking for the existence of a unique NE or SPE can both be solved in 2EXPTIME, which is not harder than merely checking for the existence of such equilibria.
References (51)
- T. Ågotnes, V. Goranko & W. Jamroga (2007): Alternating-time temporal logics with irrevocable strategies. In: TARK-2007, pp. 15-24, doi:10.1145/1324249.1324256.
- E. Altman, H. Kameda & Y. Hosokawa (2002): Nash Equilibria in Load Balancing in Distributed Computer Systems. IGTR 4(2), pp. 91-100, doi:10.1142/S0219198902000574.
- R. Alur, T.A. Henzinger & O. Kupferman (2002): Alternating-Time Temporal Logic. JACM 49(5), pp. 672-713, doi:10.1145/585265.585270.
- B. Aminof, V. Malvone, A. Murano & S. Rubin (2016): Graded Strategy Logic: Reasoning about Uniqueness of Nash Equilibria. In: AAMAS 2016, IFAAMAS, pp. 698-706.
- B. Aminof, A. Murano & S. Rubin (2015): On CTL* with Graded Path Modalities. In: LPAR-20 2016, pp. 281-296, doi:10.1007/978-3-662-48899-7_20.
- V. Bárány, L. Kaiser & A. M. Rabinovich (2010): Expressing Cardinality Quantifiers in Monadic Second-Order Logic over Trees. Fundam. Inform. 100(1-4), pp. 1-17, doi:10.3233/FI-2010-260.
- E. Bárcenas, P. Genevès, N. Layaïda & A. Schmitt (2011): Query Reasoning on Trees with Types, Interleaving, and Counting. In: IJCAI 2011, pp. 718-723, doi:10.5591/978-1-57735-516-8/IJCAI11-127.
- E. Bárcenas & J. Lavalle (2014): Global Numerical Constraints on Trees. Logical Methods in Computer Science 10(2), doi:10.2168/LMCS-10(2:10)2014.
- F. Belardinelli (2015): A Logic of Knowledge and Strategies with Imperfect Information. In: LAMAS 15.
- A. Bianco, F. Mogavero & A. Murano (2012): Graded Computation Tree Logic. TOCL 13(3), pp. 25:1-53, doi:10.1145/2287718.2287725.
- M. Bojańczyk (2004): A Bounding Quantifier. In: CSL 2004, LNCS 3210 3210, Springer, pp. 41-55, doi:10.1007/978-3-540-30124-0_7.
- M. Bojanczyk & S. Torunczyk (2012): Weak MSO+U over infinite trees. In Christoph Dürr & Thomas Wilke, editors: STACS 2012, LIPIcs 14, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 648-660, doi:10.4230/LIPIcs.STACS.2012.648.
- P.A. Bonatti, C. Lutz, A. Murano & M.Y. Vardi (2008): The Complexity of Enriched muCalculi. LMCS 4(3), pp. 1-27, doi:10.2168/LMCS-4(3:11)2008.
- T. Brihaye, A. Da Costa Lopes, F. Laroussinie & N. Markey (2009): ATL with Strategy Contexts and Bounded Memory. In: LFCS 2009, pp. 92-106, doi:10.1007/978-3-540-92687-0_7.
- D. Calvanese, G. De Giacomo & M. Lenzerini (1999): Reasoning in Expressive Description Logics with Fixpoints based on Automata on Infinite Trees. In: IJCAI 99, pp. 84-89.
- P. Čermák, A. Lomuscio, F. Mogavero & A. Murano (2014): MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications. In: CAV'14, LNCS 8559, Springer, pp. 524-531, doi:10.1007/978- 3-319-08867-9_34.
- P. Cermák, A. Lomuscio & A. Murano (2015): Verifying and Synthesising Multi-Agent Systems against One-Goal Strategy Logic Specifications. In: AAAI 2015, pp. 2038-2044.
- K. Chatterjee, T.A. Henzinger & N. Piterman (2010): Strategy Logic. IC 208(6), pp. 677-693, doi:10.1016/j.ic.2009.07.004.
- R. Cornes, R. Hartley & T. Sandler (1999): An Elementary Proof via Contraction. Journal of Public Economic Theory 1(4), pp. 499-509, doi:10.1111/1097-3923.00023.
- J. Bramel D. Simchi-Levi, X. Chen (2013): The Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management. Science and Business Media, Springer.
- S. Dal-Zilio & D. Lugiez (2003): XML Schema, Tree Logic and Sheaves Automata. In: RTA 2003, pp. 246-263, doi:10.1007/3-540-44881-0_18.
- S. Demri & D. Lugiez (2010): Complexity of modal logics with Presburger constraints. J. Applied Logic 8(3), pp. 233-252, doi:10.1016/j.jal.2010.03.001.
- E. A. Emerson & C. S. Jutla (1991): Tree Automata, Mu-Calculus and Determinacy (Extended Abstract). In: ASFCS 1991, pp. 368-377, doi:10.1109/SFCS.1991.185392.
- A. Ferrante, A. Murano & M. Parente (2008): Enriched Mu-Calculi Module Checking. LMCS 4(3), pp. 1-21, doi:10.2168/LMCS-4(3:1)2008.
- Erich Grädel (1999): On The Restraining Power of Guards. J. Symb. Log. 64(4), pp. 1719-1742, doi:10.2307/2586808.
- J. Gutierrez, P. Harrenstein & M. Wooldridge (2014): Reasoning about Equilibria in Game-Like Concurrent Systems. In: KR 2014, AAAI.
- A. Herzig, E. Lorini & D. Walther (2013): Reasoning about Actions Meets Strategic Logics. In: LORI 2013, pp. 162-175, doi:10.1007/978-3-642-40948-6_13.
- W. van der Hoek, W. Jamroga & M. Wooldridge (2005): A logic for strategic reasoning. In: AAMAS 2005, pp. 157-164, doi:10.1145/1082473.1082497.
- O. Kupferman, G. Perelli & M. Vardi (2016): Synthesis with rational environments. Annals of Mathematics and Artificial Intelligence, pp. 1-18, doi:10.1007/s10472-016-9508-8.
- O. Kupferman, G. Perelli & M. Y. Vardi (2014): Synthesis with Rational Environments. In: EUMAS 2014, pp. 219-235, doi:10.1007/978-3-319-17130-2_15.
- O. Kupferman, U. Sattler & M.Y. Vardi (2002): The Complexity of the Graded muCalculus. In: CADE'02, LNCS 2392, Springer, pp. 423-437, doi:10.1007/3-540-45620-1_34.
- O. Kupferman, M.Y. Vardi & P. Wolper (2000): An Automata Theoretic Approach to Branching-Time Model Checking. JACM 47(2), pp. 312-360, doi:10.1145/333979.333987.
- K. Leyton-Brown & Y. Shoham (2008): Essentials of Game Theory: A Concise, Multidisci- plinary Introduction (Synthesis Lectures on Artificial Intelligence and Machine Learning). M&C, doi:10.2200/S00108ED1V01Y200802AIM003.
- A. Da Costa Lopes, F. Laroussinie & N. Markey (2010): ATL with Strategy Contexts: Expressiveness and Model Checking. In: FSTTCS 2010, pp. 120-132, doi:10.4230/LIPIcs.FSTTCS.2010.120.
- V. Malvone, F. Mogavero, A. Murano & L. Sorrentino (2015): On the Counting of Strategies. In: TIME 2015, pp. 170-179, doi:10.1109/TIME.2015.19.
- V. Malvone, A. Murano & L. Sorrentino: Games with additional winning strategies. In: CILC, 2015, CEUR.
- F. Mogavero, A. Murano, G. Perelli & M.Y. Vardi (2014): Reasoning About Strategies: On the Model-Checking Problem. TOCL 15(4), pp. 34:1-42, doi:10.1145/2631917.
- F. Mogavero, A. Murano & M.Y. Vardi (2010): Reasoning About Strategies. In: FSTTCS'10, LIPIcs 8, Leibniz-Zentrum fuer Informatik, pp. 133-144, doi:10.4230/LIPIcs.FSTTCS.2010.133.
- D. E. Muller & P. E. Schupp (1995): Simulating Alternating Tree Automata by Nondeterministic Automata: New Results and New Proofs of the Theorems of Rabin, McNaughton and Safra. Theor. Comput. Sci. 141(1&2), pp. 69-107, doi:10.1016/0304-3975(94)00214-4.
- A. Orda, R. Rom & N. Shimkin (1993): Competitive routing in multiuser communication networks. IEEE/ACM Trans. Netw. 1(5), pp. 510-521, doi:10.1109/90.251910.
- G.P. Papavassilopoulos & J. B. Cruz (1979): On the Uniqueness of Nash Strategies for a Class of Analytic Differential Games. Journal of Optimization Theory and Applications 27(2), pp. 309-314, doi:10.1007/BF00933234.
- L. Pavel (2012): Game Theory for Control of Optical Networks. Science and Business Media, Springer, doi:10.1007/978-0-8176-8322-1.
- A. Pnueli (1977): The Temporal Logic of Programs. In: FOCS'77, IEEE Computer Society, pp. 46-57, doi:10.1109/SFCS.1977.32.
- S. Rubin (2008): Automata Presenting Structures: A Survey of the Finite String Case. Bulletin of Symbolic Logic 14(2), pp. 169-209, doi:10.2178/bsl/1208442827.
- H. Seidl, T. Schwentick & A. Muscholl (2008): Counting in trees. In: Logic and Automata: History and Perspectives, pp. 575-612.
- R. Selten (1965): Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetragheit. Zeitschrift fur die gesamte Staatswissenschaft 121, pp. 301-324.
- W. Thomas (1990): Automata on infinite objects. Handbook of theoretical computer science, Volume B, pp. 133-191.
- M. Ummels (2006): Rational Behaviour and Strategy Construction in Infinite Multiplayer Games. In: FSTTCS, pp. 212-223, doi:10.1007/11944836_21.
- D. Walther, W. van der Hoek & M. Wooldridge (2007): Alternating-time temporal logic with explicit strategies. In: TARK 2007, pp. 269-278, doi:10.1145/1324249.1324285.
- F. Wang, C. Huang & F. Yu (2011): A Temporal Logic for the Interaction of Strategies. In: CONCUR 2011, LNCS 6901, Springer, pp. 466-481, doi:10.1007/978-3-642-23217-6_31.
- Y. Zhang & M. Guizani (2011): Game Theory for Wireless Communications and Networking. CRC Press.