Deep Class Aware Denoising
2017, ArXiv
Abstract
The increasing demand for high image quality in mobile devices brings forth the need for better computational enhancement techniques, and image denoising in particular. At the same time, the images captured by these devices can be categorized into a small set of semantic classes. However simple, this observation has not been exploited in image denoising until now. In this paper, we demonstrate how the reconstruction quality improves when a denoiser is aware of the type of content in the image. To this end, we first propose a new fully convolutional deep neural network architecture which is simple yet powerful as it achieves state-of-the-art performance even without being class-aware. We further show that a significant boost in performance of up to $0.4$ dB PSNR can be achieved by making our network class-aware, namely, by fine-tuning it for images belonging to a specific semantic class. Relying on the hugely successful existing image classifiers, this research advocates for using a ...
References (67)
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow. org, 1, 2015. 3
- M. Aharon, M. Elad, and A. Bruckstein. K-svd: An al- gorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11):4311- 4322, Nov 2006. 1
- S. Anwar, C. P. Huynh, and F. Porikli. Class-specific image deblurring. In IEEE International Conference on Computer Vision (ICCV), pages 495-503, Dec. 2015. 3
- S. Baker and T. Kanade. Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1167-1183, 2002. 3
- J. Bellegarda and C. Monz. State of the art in statistical meth- ods for language and speech processing. Computer Speech and Language, 35:163184, Jan. 2016. 1
- Y. Bengio. Learning deep architectures for ai. Foundations and Trends in Machine Learning, 2(1):1127, 2009. 1
- J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution with deep convolutional sufficient statistics. In ICLR, 2016. 2
- O. Bryt and M. Elad. Compression of facial images using the K-SVD algorithm. Journal of Visual Communication and Image Representation, 19(4):270 -282, 2008. 3
- A. Buades, B. Coll, , and J. Morel. A non-local algorithm for image denoising. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005. 1
- H. C. Burger, C. J. Schuler, and S. Harmeling. Image de- noising: Can plain neural networks compete with bm3d? In IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR), pages 2392-2399. IEEE, 2012. 1, 2, 3, 4, 5
- S. Chan, X. Wang, and O. Elgendy. Plug-and-play admm for image restoration: Fixed point convergence and applications. ArXiv, abs/1605.01710, 2016. 1
- P. Chatterjee and P. Milanfar. Is denoising dead? IEEE Trans. Image Process., 19(4):895911, 2010. 2
- Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restora- tion. IEEE Transactions on Pattern Analysis and Machine Intelligence (CVPR), 2016. 1, 2, 3, 4, 5
- K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative fil- tering. IEEE Trans. Image Process., 16(8):2080-2095, 2007. 1, 2, 4, 5
- Y. Dar, A. M. Bruckstein, M. Elad, and R. Giryes. Post- processing of compressed images via sequential denoising. IEEE Trans. Imag. Proc., 25(7):3044-3058, 2016. 1
- M. Delbracio and G. Sapiro. Burst deblurring: Remov- ing camera shake through fourier burst accumulation. In IEEE Conference on Computer Vision and Pattern Recog- nition (CVPR), 2015. 1
- L. Deng and D. Yu. Deep learning: Methods and applica- tions. Foundations and Trends in Signal Processing, 7(3- 4):197387, 2014. 1
- W. Dong, G. Shi, Y. Ma, and X. Li. Image restoration via simultaneous sparse coding: Where structured sparsity meets gaussian scale mixture. International Journal of Computer Vision (IJCV), 114(2):217-232, Sep. 1
- W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally central- ized sparse representation for image restoration. IEEE Trans. Image Process., 22(4):1620-1630, April 2013. 1
- M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) chal- lenge. International journal of computer vision, 88(2):303- 338, 2010. 3, 4
- M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results. http://www.pascal- network.org/challenges/VOC/voc2010/workshop/index.html. 4
- M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal- network.org/challenges/VOC/voc2012/workshop/index.html. 5
- I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Book in preparation for MIT Press, 2016. 1
- H. Greenspan, B. van Ginneken, and R. M. Summers. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans- actions on Medical Imaging, 35(5):1153-1159, May 2016. 2
- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 1, 4
- J. Hirschberg and C. D. Manning. Advances in natural lan- guage processing. Science, 349(6245):261-266, 2015. 1
- S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. In SIGGRAPH, 2016. 3
- N. Joshi, W. Matusik, E. H. Adelson, and D. J. Kriegman. Personal photo enhancement using example images. ACM Trans. Graph., 29(2):12:1-12:15, Apr. 2010. 3
- A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convo- lutional neural networks. In CVPR, 2014. 1
- J. Kim, J. K. Lee, and K. M. Lee. Accurate image super- resolution using very deep convolutional networks. In CVPR, 2016. 2
- D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 3
- A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS), pages 1097-1105, 2012. 1
- M. Lebrun, A. Buades, and J. M. Morel. A nonlocal bayesian image denoising algorithm. SIAM Journal on Imaging Sci- ences, 6(3):1665-1688, 2013. 1
- Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Foun- dations and Trends in Signal Processing, 521:436444, May 2015. 1, 2
- C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Aitken, A. Te- jani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single im- age super-resolution using a generative adversarial network. arXiv abs/1609.04802, 2016. 2
- A. Levin and B. Nadler. Natural image denoising: Optimal- ity and inherent bounds. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2833-2840. IEEE, 2011. 2
- A. Levin, B. Nadler, F. Durand, and W. Freeman. Patch com- plexity, finite pixel correlations and optimal denoising. In ECCV, 2012. 2
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In ICCV, pages 2272-2279, 2009. 1
- M. Makitalo and A. Foi. Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Trans. on Image Proces., 20(1):99-109, Jan. 2011. 1
- M. Makitalo and A. Foi. Noise parameter mismatch in variance stabilization, with an application to poisson- gaussian noise estimation. IEEE Trans. on Image Proces., 23(12):5348-5359, Jan. 2014. 1
- D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecologi- cal statistics. In Proc. 8th Int'l Conf. Computer Vision, vol- ume 2, pages 416-423, July 2001. 4
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve- ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep rein- forcement learning. Nature, 518:529533, Feb. 2015. 1
- D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016. 2
- A. Poznanski and L. Wolf. Cnn-n-gram for handwriting word recognition. In CVPR, 2016. 1
- Y. Romano and M. Elad. Boosting of image denoising algo- rithms. SIAM Journal on Imaging Sciences, 8(2):1187-1219, 2015. 6
- Y. Romano, M. Elad, and P. Milanfar. The little engine that could: Regularization by denoising (red). arXiv:1611.02862, 2016. 1
- A. Rond, R. Giryes, and M. Elad. Poisson inverse problems by the plug-and-play scheme. Journal of Visual Communi- cation and Image Representation, 2016. 1
- S. Roth and M. J. Black. Fields of experts. International Journal of Computer Vision, 82(2):205-229, 2009. 4, 5
- O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Int. Journal of Computer Vision, 115(3):211-252, 2015. 4, 5
- H. Sak, A. Senior, K. Rao, and F. Beaufays. Fast and ac- curate recurrent neural network acoustic models for speech recognition. In INTERSPEECH, 2015. 1
- J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015. 1
- U. Schmidt, Q. Gao, and S. Roth. A generative perspective on mrfs in low-level vision. In IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR), 2010. 1
- F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni- fied embedding for face recognition and clustering. In CVPR, 2015. 1
- C. J. Schuler, H. C. Burger, S. Harmeling, and B. Schlkopf. A machine learning approach for non-blind image deconvo- lution. In CVPR, 2013. 2
- D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, 529:484489, 2016. 1
- R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. Recursive deep models for seman- tic compositionality over a sentiment treebank. In EMNLP, 2013. 1
- S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buz- zard, L. F. Drummy, J. P. Simmons, and C. A. Bouman. Plug-and-play priors for bright field electron tomography and sparse interpolation. IEEE Transactions on Computa- tional Imaging, 2(4):408-423, Dec 2016. 1
- J. Sulam and M. Elad. Expected patch log likelihood with a sparse prior. In Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), Hong-Kong, 2015. 6
- I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural networks. In NIPS, 2014. 1
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015. 1, 4
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wo- jna. Rethinking the inception architecture for computer vi- sion, journal = arXiv, abs/1512.00567, year = 2015, url = http://arxiv.org/abs/1512.00567,. 4
- R. Vemulapalli, O. Tuzel, and M.-Y. Liu. Deep gaussian con- ditional random field network: A model-based deep network for discriminative denoising. In IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR), 2016. 1, 2, 4, 5
- S. Venkatakrishnan, C. Bouman, and B. Wohlberg. Plug-and- play priors for model based reconstruction. In GlobalSIP, 2013. 1
- N. Wang, D. Tao, X. Gao, X. Li, and J. Li. A comprehen- sive survey to face hallucination. International Journal of Computer Vision, 106(1):9-30, 2014. 3
- G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity. IEEE Trans. Image Process., 21(5):2481 -2499, may 2012. 1
- R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza- tion. ECCV, 2016. 3
- D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In ICCV, 2011. 6