Academia.eduAcademia.edu

Outline

Sand settling through bedform‐generated turbulence in rivers

2020, Earth Surface Processes and Landforms

https://doi.org/10.1002/ESP.4962

Abstract

Fluvial bedforms generate a turbulent wake that can impact suspended-sediment settling in the passing flow. This impact has implications for local suspended-sediment transport, bedform stability, and channel evolution; however, it is typically not well-considered in geomorphologic models. Our study uses a three-dimensional OpenFOAM hydrodynamic and particle-tracking model to investigate how turbulence generated from bedforms and the channel bed influences medium sand-sized particle settling, in terms of the distribution of suspended particles within the flow field and particle-settling velocities. The model resolved the effect of an engineered bedform, which altered the flow field in a manner similar to a natural dune. The modelling scenarios alternated bed morphology and the simulation of turbulence, using detached eddy simulation (DES), to differentiate the influence of bedform-generated turbulence relative to that of turbulence generated from the channel bed. The bedform generated a turbulent wake that was composed of eddies with significant anisotropic properties. The eddies and, to a lesser degree, turbulence arising from velocity shear at the bed substantially reduced settling velocities relative to the settling velocities predicted in the absence of turbulence. The eddies tended to advect sediment particles in their primary direction, diffuse particles throughout the flow column, and reduced settling likely due to production of a positively skewed vertical-velocity fluctuation distribution. Study results suggest that the bedform wake has a significant impact on particle-settling behaviour (up to a 50% reduction in settling velocity) at a scale capable of modulating local suspended transport rates and bedform dynamics.

References (133)

  1. Allen JRL. 1978. Polymodal dune assemblages: an interpretation in terms of dune creation-destruction in periodic flows. Sedimentary Geology 20: 17-28.
  2. Allison MA, Yuill BT, Meselhe EA, Marsh JK, Kolker AS, Ameen AD. 2017. Observational and numerical particle tracking to examine sed- iment dynamics in a Mississippi River delta diversion. Estuarine, Coastal and Shelf Science 194: 97-108. https://doi.org/10.1016/j. ecss.2017.06.004
  3. Alvarez LV, Schmeeckle MW, Grams PE. 2017. A detached eddy simu- lation model for the study of lateral separation zones along a large canyon-bound river. Journal of Geophysical Research: Earth Surface 122: 25-49.
  4. Amsler ML, Schreider MI. 1999. Dune height prediction at floods in the Paraná River, Argentina. In River Sedimentation: Theory and Applica- tions, Jayewardena AW, Lee JHW, Wang ZY (eds). A.A. Balkema: Rotterdam; 615-620.
  5. Atkins R, Soulsby RL, Waters CB, Oliver N. 1989. Field measurements of sediment suspension above bedforms in a sandy estuary. Techni- cal Report. Hydraulics Research: Wallingford.
  6. Badano ND, Sabarots Gerbec M, Re M, Menéndez AN. 2012. A coupled hydrosedimentologic model to assess the advance of the Parana River Delta Front. In Proceedings of the Sixth International Conference on Fluvial Hydraulics, San Jose, Costa Rica.
  7. B. YUILL ET AL.
  8. Bagnold RA. 1966. An Approach to the Sediment Transport Problem from General Physics. US Government Printing Office: Washington, D.C. Bennett SJ, Best JL. 1995. Mean flow and turbulence structure over fixed, two-dimensional dunes: implications for sediment transport and bedform stability. Sedimentology 42: 491-513. https://doi.org/ 10.1111/j.1365-3091.1995.tb00386.x
  9. Bennett SJ, Bridge JS, Best JL. 1998. Fluid and sediment dynamics of upper stage plane beds. Journal of Geophysical Research: Oceans 103: 1239-1274. https://doi.org/10.1029/97JC02764
  10. Best J. 2005. The fluid dynamics of river dunes: a review and some future research directions. Journal of Geophysical Research: Earth Surface 110: 1-21. https://doi.org/10.1029/2004JF000218
  11. Best J, Kostaschuk R. 2002. An experimental study of turbulent flow over a low-angle dune. Journal of Geophysical Research: Oceans 107: 18-1-18-19.
  12. Bhaganagar K, Hsu T-J. 2009. Direct numerical simulations of flow over two-dimensional and three-dimensional ripples and implication to sediment transport: steady flow. Coastal Engineering 56: 320-331. https://doi.org/10.1016/j.coastaleng.2008.09.010
  13. Bijker EW, Van Hijum E, Vellinga P. 1976. Sand transport by waves. In Coastal Engineering Proceedings.
  14. Bradley RW, Venditti JG. 2019. The growth of dunes in rivers. Journal of Geophysical Research: Earth Surface 124: 548-566.
  15. Bradley RW, Venditti JG, Kostaschuk RA, Church M, Hendershot M, Allison MA. 2013. Flow and sediment suspension events over low-angle dunes: Fraser Estuary, Canada. Journal of Geophysical Research: Earth Surface 118: 1693-1709.
  16. Bridge JS, Best JL. 1988. Flow, sediment transport and bedform dynam- ics over the transition from dunes to upper-stage plane beds: implica- tions for the formation of planar laminae. Sedimentology 35: 753-763.
  17. Brucato A, Grisafi F, Montante G. 1998. Particle drag coefficients in tur- bulent fluids. Chemical Engineering Science 53: 3295-3314.
  18. Carling PA, Williams JJ, Golz E, Kelsey AD. 2000. The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. II. Hydrodynamics and sediment transport. Sedi- mentology 47(1), 253-278.
  19. Cellino M, Lemmin U. 2004. Influence of coherent flow structures on the dynamics of suspended sediment transport in open-channel flow. Journal of Hydraulic Engineering 130: 1077-1088.
  20. Chakrabarti A, Chen Q, Smith HD, Liu D. 2016. Large eddy simulation of unidirectional and wave flows through vegetation. Journal of Engi- neering Mechanics 142: 1-8, 04016048.
  21. Chang YS. 2004. Suspended sediment and hydrodynamics above mildly sloped long wave ripples. Journal of Geophysical Research 109: 1-16. https://doi.org/10.1029/2003JC001900
  22. Chang YS, Park Y-G. 2016. Suspension of sediment particles over a rip- ple due to turbulent convection under unsteady flow conditions. Ocean Science Journal 51: 127-135. https://doi.org/10.1007/ s12601-016-0011-2
  23. Chang Y, Scotti A. 2003. Entrainment and suspension of sediments into a turbulent flow over ripples. Journal of Turbulence 4: 1-22. https:// doi.org/10.1088/1468-5248/4/1/019
  24. Chang WY, Constantinescu G, Tsai WF, Lien HC. 2011. Coherent struc- ture dynamics and sediment erosion mechanisms around an in-stream rectangular cylinder at low and moderate angles of attack. Water Resources Research 47(W12532), 1-16. https://doi.org/ 10.1029/2011WR010586.
  25. Chen X, Cardenas MB, Chen L. 2015. Three-dimensional versus two-dimensional bed form-induced hyporheic exchange. Water Resources Research 51: 2923-2936.
  26. Davies AG, Thorne PD. 2016. On the suspension of graded sediment by waves above ripples: inferences of convective and diffusive pro- cesses. Continental Shelf Research 112: 46-67. https://doi.org/ 10.1016/j.csr.2015.10.006
  27. Dietrich WE. 1982. Settling velocity of natural particles. Water Resources Research 18: 1615-1626. https://doi.org/10.1029/ WR018i006p01615
  28. Dietrich WE, Smith JD. 1984. Bed load transport in a river meander. Water Resources Research 20: 1355-1380.
  29. Duan JG, Julien PY. 2010. Numerical simulation of meandering evolu- tion. Journal of Hydrology 391: 34-46.
  30. Dubief Y, Delcayre F. 2000. On coherent-vortex identification in turbu- lence. Journal of Turbulence 1: 1-22. https://doi.org/10.1088/1468- 5248/1/1/011
  31. Engelund F, Fredsøe J. 1976. A sediment transport model for straight alluvial channels. Hydrology Research 7: 293-306.
  32. Fornari W, Picano F, Brandt L. 2016. Sedimentation of finite-size spheres in quiescent and turbulent environments. Journal of Fluid Mechanics 788: 640-669. https://doi.org/10.1017/jfm.2015.698
  33. Fung JCH. 1998. Effect of nonlinear drag on the settling velocity of par- ticles in homogeneous isotropic turbulence. Journal of Geophysical Research: Oceans 103: 27905-27917. https://doi.org/10.1029/ 98JC02822
  34. Gabel SL. 1993. Geometry and kinematics of dunes during steady and unsteady flows in the Calamus River, Nebraska, USA. Sedimentology 40: 237-269.
  35. Garcia M, Parker G. 1991. Entrainment of bed sediment into suspen- sion. Journal of Hydraulic Engineering 117: 414-435.
  36. Gelfenbaum G, Smith JD. 1986. Experimental evaluation of a general- ized suspended-sediment transport theory. In Shelf Sands and Sand- stones, Knight RJ, McLean JR (eds). Canadian Society of Petroleum Geologists: Calgary; 133-134.
  37. Grass AJ. 1971. Structural features of turbulent flow over smooth and rough boundaries. Journal of Fluid Mechanics 50: 233-255.
  38. Grigoriadis DGE, Balaras E, Dimas AA. 2009. Large-eddy simulations of unidirectional water flow over dunes. Journal of Geophysical Research 114(F02022), 1-19. https://doi.org/10.1029/2008JF001014
  39. Hand BM, Bartberger CE. 1988. Leeside sediment fallout patterns and the stability of angular bedforms. Journal of Sedimentary Research 58: 33-43. https://doi.org/10.1306/212F8D05-2B24-11D7- 8648000102C1865D
  40. Hendershot ML, Venditti JG, Bradley RW, Kostaschuk RA, Church M, Allison MA. 2016. Response of low-angle dunes to variable flow. Sedimentology 63: 743-760.
  41. Herbert CM, Alexander J. 2018. Bottomset architecture formed in the troughs of dunes and unit bars. Journal of Sedimentary Research 88: 522-553.
  42. Howard AD. 1971. Simulation of stream networks by headword growth and branching. Geographical Analysis 3: 29-50.
  43. Hurther D, Lemmin U. 2003. Turbulent particle flux and momentum flux statistics in suspension flow. Water Resources Research 39(5), 1139-1150. https://doi.org/10.1029/2001WR001113.
  44. Jerolmack DJ, Mohrig D. 2005. A unified model for subaqueous bed form dynamics. Water Resources Research 41(W12421), 1-10. https://doi.org/10.1029/2005WR004329.
  45. Johannesson H, Parker G. 1989. Linear theory of river meanders. River Meandering 12: 181-213.
  46. Johns B, Xing J. 1993. Three-dimensional modelling of the free surface turbulent flow of water over a bedform. Continental Shelf Research 13: 705-721.
  47. Keylock CJ, Constantinescu G, Hardy RJ. 2012. The application of com- putational fluid dynamics to natural river channels: eddy resolving versus mean flow approaches. Geomorphology 179: 1-20. https:// doi.org/10.1016/j.geomorph.2012.09.006
  48. Keylock CJ, Lane SN, Richards KS. 2014. Quadrant/octant sequencing and the role of coherent structures in bed load sediment entrainment. Journal of Geophysical Research: Earth Surface 119: 264-286. https:// doi.org/10.1002/2012JF002698
  49. Khosronejad A, Sotiropoulos F. 2014. Numerical simulation of sand waves in a turbulent open channel flow. Journal of Fluid Mechanics 753: 150-216. https://doi.org/10.1017/jfm.2014.335
  50. Kirchner JW, Dietrich WE, Iseya F, Ikeda H. 1990. The variability of crit- ical shear stress, friction angle, and grain protrusion in water-worked sediments. Sedimentology 37: 647-672.
  51. Kostaschuk R. 2000. A field study of turbulence and sediment dynamics over subaqueous dunes with flow separation. Sedimentology 47: 519-531.
  52. Kostaschuk R, Best J. 2005. Response of sand dunes to variations in tidal flow: Fraser Estuary. Canada. Journal of Geophysical Research: Earth Surface 110(F04S04), 1-10. https://doi.org/10.1029/ 2004JF000176
  53. Kostaschuk RA, Church MA. 1993. Macroturbulence generated by dunes: Fraser River, Canada. Sedimentary Geology 85: 25-37. https://doi.org/10.1016/0037-0738(93)90073-E SAND SETTLING THROUGH BEDFORM-GENERATED TURBULENCE IN RIVERS Kostaschuk R, Villard P. 1996. Flow and sediment transport over large subaqueous dunes: Fraser River, Canada. Sedimentology 43: 849-863.
  54. Kostaschuk RA, Villard PV. 1999. Turbulent sand suspension over dunes. In Fluvial Sedimentology VI, Vol. 28; 3-14.
  55. Kostaschuk R, Shugar D, Best J, Parsons D, Lane S, Hardy R, Orfeo O. 2009. Suspended sediment transport and deposition over a dune: Río Paraná, Argentina. Earth Surface Processes and Landforms 34: 1605-1611.
  56. Kreplin H-P, Eckelmann H. 1979. Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. The Physics of Fluids 22: 1233-1239.
  57. Kwoll E, Winter C, Becker M. 2013. Intermittent suspension and trans- port of fine sediment over natural tidal bedforms. In Coherent Flow Structures at Earth's Surface, Venditti JG, Best JL, Church M, Hardy RJ (eds). Wiley-Blackwell: Oxford; 231-242.
  58. Kwoll E, Venditti JG, Bradley RW, Winter C. 2016. Flow structure and resistance over subaqueous high-and low-angle dunes. Journal of Geophysical Research: Earth Surface 121: 545-564. https://doi.org/ 10.1002/2015JF003637
  59. Lai YG, Bandrowski DJ. 2014. Large wood flow hydraulics: a 3D modelling approach. In Proceedings of Bold Visions for Environmen- tal Modelling, San Diego, CA.
  60. Lapointe M. 1992. Burst-like sediment suspension events in a sand bed river. Earth Surface Processes and Landforms 17: 253-270. https:// doi.org/10.1002/esp.3290170305
  61. Leeder MR. 1983. On the dynamics of sediment suspension by residual Reynolds stresses-confirmation of Bagnold's theory. Sedimentology 30: 485-491.
  62. Leeder MR, Gray TE, Alexander J. 2005. Sediment suspension dynam- ics and a new criterion for the maintenance of turbulent suspensions. Sedimentology 52: 683-691.
  63. Lefebvre A. 2019. Three-dimensional flow above river bedforms: insights from numerical modeling of a natural dune field (Río Paraná, Argentina). Journal of Geophysical Research: Earth Surface 124: 2241-2264.
  64. Lefebvre A, Winter C. 2016. Predicting bed form roughness: the influ- ence of lee side angle. Geo-Marine Letters 36: 121-133.
  65. Lefebvre A, Paarlberg AJ, Winter C. 2014. Flow separation and shear stress over angle-of-repose bed forms: a numerical investigation. Water Resources Research 50: 986-1005. https://doi.org/10.1002/ 2013WR014587
  66. Lelouvetel J, Bigillon F, Doppler D, Vinkovic I, Champagne J-Y. 2009. Experimental investigation of ejections and sweeps involved in parti- cle suspension. Water Resources Research 45(W02416), 1-15. https://doi.org/10.1029/2007WR006520
  67. Luchik TS, Tiederman WG. 1987. Timescale and structure of ejections and bursts in turbulent channel flows. Journal of Fluid Mechanics 174: 529-552.
  68. Marchioli C, Armenio V, Salvetti MV, Soldati A. 2006. Mechanisms for deposition and resuspension of heavy particles in turbulent flow over wavy interfaces. Physics of Fluids 18: 1-16, 025102. https://doi.org/ 10.1063/1.2166453
  69. McElroy B, Mohrig D. 2009. Nature of deformation of sandy bed forms. Journal of Geophysical Research 114(F00A04), 1-13. https://doi.org/ 10.1029/2008JF001220
  70. McLean SR. 1992. On the calculation of suspended load for noncohesive sediments. Journal of Geophysical Research: Oceans 97: 5759-5770.
  71. McLean SR, Nelson JM, Wolfe SR. 1994. Turbulence structure over two-dimensional bed forms: implications for sediment transport. Journal of Geophysical Research 99(C6), 12729-12747. https://doi. org/10.1029/94JC00571
  72. McQuivey RS. 1973. Summary of Turbulence Data from Rivers, Con- veyance Channels, and Laboratory Flumes: Turbulence in Water. US Government Printing Office: Washington, D.C.
  73. Middleton GV, Southard JB. 1984. Mechanics of sediment movement. Short Course No. 3. Society of Economic Paleontologists and Miner- alogists: Providence, RI.
  74. Mohrig D, Smith JD. 1996. Predicting the migration rates of subaque- ous dunes. Water Resources Research 32: 3207-3217. https://doi. org/10.1029/96WR01129
  75. Molinas A, Wu B. 2001. Transport of sediment in large sand-bed rivers. Journal of Hydraulic Research 39: 135-146.
  76. Müller A, Gyr A. 1986. On the vortex formation in the mixing layer behind dunes. Journal of Hydraulic Research 24: 359-375.
  77. Murray SP. 1970. Settling velocities and vertical diffusion of particles in turbulent water. Journal of Geophysical Research 75: 1647-1654. https://doi.org/10.1029/JC075i009p01647
  78. Murray AB, Paola C. 1994. A cellular model of braided rivers. Nature 371: 54-57.
  79. Nagata N, Hosoda T, Muramoto Y. 2000. Numerical analysis of river channel processes with bank erosion. Journal of Hydraulic Engineer- ing 126: 243-252.
  80. Naqshband S, Ribberink JS, Hurther D, Hulscher SJ. 2014. Bed load and suspended load contributions to migrating sand dunes in equilib- rium. Journal of Geophysical Research: Earth Surface 119: 1043-1063.
  81. Nelson JM, McLean SR, Wolfe SR. 1993. Mean flow and turbulence fields over two-dimensional bed forms. Water Resources Research 29: 3935-3953. https://doi.org/10.1029/93WR01932
  82. Nelson JM, Shreve RL, McLean SR, Drake TG. 1995. Role of near-bed turbulence structure in bed load transport and bed form mechanics. Water Resources Research 31: 2071-2086. https://doi.org/10.1029/ 95WR00976
  83. Nepf HM. 1999. Drag, turbulence, and diffusion in flow through emer- gent vegetation. Water Resources Research 35: 479-489.
  84. Nielsen P. 1984. On the motion of suspended sand particles. Journal of Geophysical Research: Oceans 89: 616-626.
  85. Nielsen P. 1993. Turbulence effects on the settling of suspended parti- cles. SEPM Journal of Sedimentary Research 63(5), 835-838. https:// doi.org/10.1306/D4267C1C-2B26-11D7-8648000102C1865D
  86. Nittrouer JA, Allison MA, Campanella R. 2008. Bedform transport rates for the lowermost Mississippi River. Journal of Geophysical Research 113(F03004), 1-16. https://doi.org/10.1029/2007JF000795
  87. Omidyeganeh M, Piomelli U. 2013. Large-eddy simulation of three-dimensional dunes in a steady, unidirectional flow. Part 2. Flow structures. Journal of Fluid Mechanics 734: 509-534.
  88. Ortiz AC, Ashton A, Nepf H. 2013. Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. Journal of Geophysical Research: Earth Surface 118: 2585-2599.
  89. Paarlberg AJ, Dohmen-Janssen CM, Hulscher SJ, Termes P. 2009. Modeling river dune evolution using a parameterization of flow sep- aration. Journal of Geophysical Research: Earth Surface 114(F01014), 1-17. https://doi.org/10.1029/2007JF000910
  90. Paola C, Twilley RR, Edmonds DA, Kim W, Mohrig D, Parker G, Viparelli E, Voller VR. 2011. Natural processes in delta restoration: application to the Mississippi Delta. Annual Review of Marine Sci- ence 3: 67-91. https://doi.org/10.1146/annurev-marine-120709- 142856
  91. Papanicolaou AN, Diplas P, Evaggelopoulos N, Fotopoulos S. 2002. Stochastic incipient motion criterion for spheres under various bed packing conditions. Journal of Hydraulic Engineering 128: 369-380.
  92. Parsons DR, Best J. 2013. Bedforms: views and new perspectives from the Third International Workshop on Marine and River Dune Dynam- ics (MARID3). Earth Surface Processes and Landforms 38: 319-329.
  93. Parsons DR, Best JL, Orfeo O, Hardy RJ, Kostaschuk R, Lane SN. 2005. Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. Journal of Geophysical Research: Earth Surface 110(F04S03), 1-9. https://doi.org/10.1029/ 2004JF000231
  94. Pasiok R, Stilger-Szydło E. 2010. Sediment particles and turbulent flow simulation around bridge piers. Archives of Civil and Mechanical Engineering 10: 67-79.
  95. Prent MT, Hickin EJ. 2001. Annual regime of bedforms, roughness and flow resistance, Lillooet River, British Columbia, BC. Geomorphol- ogy 41: 369-390.
  96. Ramirez MT, Allison MA. 2013. Suspension of bed material over sand bars in the Lower Mississippi River and its implications for Mississippi delta environmental restoration. Journal of Geophysical Research: Earth Surface 118: 1085-1104. https://doi.org/10.1002/jgrf.20075
  97. Raudkivi AJ. 1998. Loose Boundary Hydraulics. A.A. Balkema: Rotterdam.
  98. B. YUILL ET AL.
  99. Reesink AJH, Bridge JS. 2007. Influence of superimposed bedforms and flow unsteadiness on formation of cross strata in dunes and unit bars. Sedimentary Geology 202: 281-296.
  100. van Rijn LC. 1984. Sediment transport, part II: suspended load trans- port. Journal of Hydraulic Engineering 110: 1613-1641.
  101. van Rijn LC. 2007. Unified view of sediment transport by currents and waves. II: Suspended Transport. Journal of Hydraulic Engineering 133: 668-689. https://doi.org/10.1061/(ASCE)0733- 9429(2007)133:6(668)
  102. van Rijn LC, Tan GL. 1985. SUTRENCH-model: two-dimensional verti- cal mathematical model for sedimentation in dredged channels and trenches by currents and waves. Rijkswaterstaat Communications: The Hague.
  103. Rood KM, Hickin EJ. 1989. Suspended-sediment concentration and calibre in relation to surface-flow structure in Squamish River estu- ary, southwestern British Columbia. Canadian Journal of Earth Sci- ences 26: 2172-2176. https://doi.org/10.1139/e89-183
  104. Schmeeckle MW. 2014. Numerical simulation of turbulence and sedi- ment transport of medium sand. Journal of Geophysical Research: Earth Surface 119: 1240-1262.
  105. Schmeeckle MW. 2015. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simula- tion downstream of a backward-facing step. Earth Surface Dynamics 3: 105-112. https://doi.org/10.5194/esurf-3-105-2015
  106. Schmeeckle MW, Shimizu Y, Hoshi K, Baba H, Ikezaki S. 1999. Turbu- lent structures and suspended sediment over two-dimensional dunes. Journal of Hydraulic Engineering 134: 261-270.
  107. Shams M, Ahmadi G, Smith DH. 2002. Computational modeling of flow and sediment transport and deposition in meandering rivers. Advances in Water Resources 25: 689-699.
  108. Sheng YP, Villaret C. 1989. Modeling the effect of suspended sediment stratification on bottom exchange processes. Journal of Geophysical Research: Oceans 94: 14429-14444.
  109. Shugar DH, Kostaschuk R, Best JL, Parsons DR, Lane SN, Orfeo O, Hardy RJ. 2010. On the relationship between flow and suspended sediment transport over the crest of a sand dune, Río Paraná, Argentina. Sedimentology 57: 252-272.
  110. Simons DB, Richardson EV. 1961. Forms of bed roughness in alluvial channel. Journal of the Hydraulics Division 87: 87-105.
  111. Simons DB, Richardson EV, Nordin Jr CF. 1965. Bedload Equation for Ripples and Dunes. U.S. Geological Survey Professional Paper: Washington, D.C.
  112. Smith JD, McLean SR. 1977. Spatially averaged flow over a wavy sur- face. Journal of Geophysical Research 82: 1735-1746.
  113. Spalart P, Allmaras S. 1994. A one-equation turbulence model for aero- dynamic flows. La Recherche Aerospatiale 1: 5-21.
  114. Stommel H. 1949. Trajectories of small bodies sinking slowly through convection cells. Journal of Marine Research 8: 24-29.
  115. Stout JE, Arya SP, Genikhovich EL. 1995. The effect of nonlinear drag on the motion and settling velocity of heavy particles. Journal of the Atmospheric Sciences 52: 3836-3848. https://doi.org/10.1175/ 1520-0469(1995)052<3836:TEONDO>2.0.CO;
  116. Tominaga Y, Stathopoulos T. 2011. CFD modeling of pollution disper- sion in a street canyon: comparison between LES and RANS. Journal of Wind Engineering and Industrial Aerodynamics 99: 340-348.
  117. Tooby PF, Wick GL, Isaacs JD. 1977. The motion of a small sphere in a rotating velocity field: a possible mechanism for suspending particles in turbulence. Journal of Geophysical Research 82: 2096-2100.
  118. Umlauf L, Burchard H. 2003. A generic length-scale equation for geo- physical turbulence models. Journal of Marine Research 61: 235-265. https://doi.org/10.1357/002224003322005087
  119. VanSickle J, Beschta RL. 1983. Supply-based models of suspended sediment transport in streams. Water Resources Research 19: 768-778.
  120. Vargas-Luna A, Crosato A, Uijttewaal WS. 2015. Effects of vegetation on flow and sediment transport: comparative analyses and validation of predicting models. Earth Surface Processes and Landforms 40: 157-176.
  121. Venditti JG. 2007. Turbulent flow and drag over fixed two-and three-dimensional dunes. Journal of Geophysical Research 112 (F04008), 1-21. https://doi.org/10.1029/2006JF000650
  122. Venditti JG, Bauer BO. 2005. Turbulent flow over a dune: Green River, Colorado. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 30: 289-304.
  123. Venditti JG, Bennett SJ. 2000. Spectral analysis of turbulent flow and suspended sediment transport over fixed dunes. Journal of Geophys- ical Research: Oceans 105: 22035-22047. https://doi.org/10.1029/ 2000JC900094
  124. Wang Y. 2013. Development of a numerical tool to predict hydrody- namics, temperature and TDG in hydropower flows. PhD thesis, Uni- versity of Iowa, Ames, IA.
  125. Wang L-P, Maxey MR. 1993. Settling velocity and concentration distri- bution of heavy particles in homogeneous isotropic turbulence. Jour- nal of Fluid Mechanics 256: 27-68. https://doi.org/10.1017/ S0022112093002708
  126. Wang Y, Politano M, Laughery R, Weber L. 2015. Model development in OpenFOAM to predict spillway jet regimes. Journal of Applied Water Engineering and Research 3: 80-94.
  127. Wei T, Willmarth WW. 1991. Examination of v-velocity fluctuations in a turbulent channel flow in the context of sediment transport. Journal of Fluid Mechanics 223: 241-252.
  128. Wren DG, Kuhnle RA, Wilson CG. 2007. Measurements of the relation- ship between turbulence and sediment in suspension over mobile sand dunes in a laboratory flume. Journal of Geophysical Research: Earth Surface 112(F03009), 1-14.
  129. Yager EM, Schmeeckle MW. 2013. The influence of vegetation on tur- bulence and bed load transport. Journal of Geophysical Research: Earth Surface 118: 1585-1601.
  130. Yang S-Q. 2007. Turbulent transfer mechanism in sediment-laden flow. Journal of Geophysical Research 112(F01005), 1-14. https://doi.org/ 10.1029/2005JF000452
  131. Yang JQ, Nepf HM. 2018. A turbulence-based bed-load transport model for bare and vegetated channels. Geophysical Research Letters 45: 10428-10436.
  132. Zedler EA, Street RL. 2001. Large-eddy simulation of sediment transport: currents over ripples. Journal of Hydraulic Engineering 127: 444-452. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:6(444)
  133. Zhao T, Dai F, Xu N. 2017. Coupled DEM-CFD investigation on the for- mation of landslide dams in narrow rivers. Landslides 14: 189-201. 1