Academia.eduAcademia.edu

Outline

Multi AGV Coordination Tolerant to Communication Failures

2021, Robotics

https://doi.org/10.3390/ROBOTICS10020055

Abstract

Most path planning algorithms used presently in multi-robot systems are based on offline planning. The Timed Enhanced A* (TEA*) algorithm gives the possibility of planning in real time, rather than planning in advance, by using a temporal estimation of the robot’s positions at any given time. In this article, the implementation of a control system for multi-robot applications that operate in environments where communication faults can occur and where entire sections of the environment may not have any connection to the communication network will be presented. This system uses the TEA* to plan multiple robot paths and a supervision system to control communications. The supervision system supervises the communication with the robots and checks whether the robot’s movements are synchronized. The implemented system allowed the creation and execution of paths for the robots that were both safe and kept the temporal efficiency of the TEA* algorithm. Using the Simtwo2020 simulation softwar...

References (30)

  1. charging stations; (q) Movement of the red and purple robots towards their charging posts;
  2. Ullrich, G. The History of Automated Guided Vehicle Systems. Autom. Guid. Veh. Syst. Prim. Pract. Appl. 2015. [CrossRef]
  3. Siefke, L.; Sommer, V.; Wudka, B.; Thomas, C. Robotic systems of systems based on a decentralized service-oriented architecture. Robotics 2020, 9, 78. [CrossRef]
  4. Santos, J.; Costa, P.; Rocha, L.F.; Moreira, A.P.; Veiga, G. Time enhanced A*: Towards the development of a new approach for Multi-Robot Coordination. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17-19 March 2015; pp. 3314-3319. [CrossRef]
  5. Moura, P.; Costa, P.; Lima, J.; Costa, P. A temporal optimization applied to time enhanced A*. AIP Conf. Proc. 2019, 2116, 1-4.
  6. Downey, A.B. The Little Book of Semaphores, 2nd ed.; v2.2.1; Green Tea Press: Needham, MA, USA, 2016.
  7. Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.; Zhou, N.F. Robust multi-agent path finding and executing. J. Artif. Intell. Res. 2020, 67, 549-579. [CrossRef]
  8. Felner, A.; Stern, R.; Shimony, S.E.; Boyarski, E.; Goldenberg, M.; Sharon, G.; Sturtevant, N.; Wagner, G.; Surynek, P. Search- based optimal solvers for the multi-agent pathfinding problem: Summary and challenges. In Proceedings of the 10th Annual Symposium on Combinatorial Search, SoCS 2017, Pittsburgh, PA, USA, 16-17 June 2017; pp. 29-37.
  9. Surynek, P. An optimization variant of multi-robot path planning is intractable. In Proceedings of the National Conference on Artificial Intelligence, Atlanta, GA, USA, 11-15 July 2010; Volume 2, pp. 1261-1263.
  10. Yu, J. Intractability of optimal multirobot path planning on planar graphs. IEEE Robot. Automat. Lett. 2016, 1, 33-40. [CrossRef]
  11. Falcó, A.; Hilario, L.; Montés, N.; Mora, M.C.; Nadal, E. A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition. Mathematics 2020, 8, 2245. [CrossRef]
  12. Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-robot path planning method using reinforcement learning. Appl. Sci. 2019, 9, 3057. [CrossRef]
  13. Yu, J.; Su, Y.; Liao, Y. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning. Front. Neurorobot. 2020, 14, 1-12. [CrossRef] [PubMed]
  14. Da Costa, P.L.C.G. Planeamento Cooperativo de Tarefas e Trajectórias em Múltiplos Robôs. Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2011; p. 231.
  15. Latombe, J.C. Introduction and Overview. Robot Motion Planning. In Robot Motion Plan; Springer: Boston, MA, USA, 1991; pp. 1-57. [CrossRef]
  16. Lozano-Pérez, T.; Wesley, M.A. An Algorithm for Planning Collision-Free Paths Among Polyhedral Obstacles. Commun. ACM 1979, 22, 560-570. [CrossRef]
  17. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006; 826p. [CrossRef]
  18. Hart, P.E.; Nilsson, N.J.; Raphael, B. The Heuristic Determination. IEEE Trans. Syst. Sci. Cybern. 1968, 100-107. [CrossRef]
  19. Stentz, A. Optimal and Efficient Path Planning/or Partially Known Environments. In Intelligent Unmanned Ground Vehicles; Springer: Boston, MA, USA, 1997.
  20. Koenig, S.; Likhachev, M. Incremental A*. In Advances in Neural Information Processing Systems 14 (NIPS 2001);
  21. Dietterich T., Becker S., Ghahramani Z., Eds.; MIT Press: Cambridge, MA, USA, 2002.
  22. Wang, W.; Goh, W.B. Multi-robot path planning with the spatio-temporal A* algorithm and its variants. In Advanced Agent Technology, Proceedings of the AAMAS 2011, Taipei, Taiwan, 2-6 May 2011; Dechesne F., Hattori H., Mors A., Such J.M., Weyns D., Eds.; Springer Publishing: New York, NY, USA, 2011; pp. 313-329. [CrossRef]
  23. Wagner, G.; Choset, H. Subdimensional expansion for multirobot path planning. Artif. Intell. 2015, 219, 1-24. [CrossRef]
  24. Jansen, R.; Tg, C.; Sturtevant, N. A new approach to cooperative pathfinding. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, Taipei, Taiwan, 2-6 May 2008; Volume 3, pp. 1401-1404.
  25. Cao, Y.U.; Fukunaga, A.S.; Kahng, A.B. Cooperative Mobile Robotics: Antecedents and Directions. Auton. Robot. 1997, 4, 7-27.
  26. Raynal, M. Fault-tolerant Agreement in Synchronous Message-passing Systems. In Synthesis Lectures on Distributed Computing Theory; Morgan & Claypool Publishers: Williston, VT, USA, 2010; Volume 1, pp. 1-189. [CrossRef]
  27. Kandath, H.; Senthilnath, J.; Sundaram, S. Mutli-agent consensus under communication failure using Actor-Critic Reinforcement Learning. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, Bangalore, India, 18-21 November 2019; pp. 1461-1465. [CrossRef]
  28. Braun, J.; Fernandes, L.A.; Moya, T.; Oliveira, V.; Brito, T.; Lima, J.; Costa, P. Robot@Factory Lite: An Educational Approach for the Competition with Simulated and Real Environment. In Proceedings of the Robot 2019: Fourth Iberian Robotics Conference, Porto, Portugal, 20-22 November 2019; pp. 478-489. [CrossRef]
  29. Costa, P.; Gonçalves, J.; Lima, J.; Malheiros, P. Simtwo realistic simulator: A tool for the development and validation of robot software. Theory Appl. Math. Comput. Sci. 2011, 1, 17-33.
  30. Silver, D. Cooperative pathfinding. In Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE) 2005, Marina del Rey, CA, USA, 1-3 June 2005; pp. 117-122.