Academia.eduAcademia.edu

Outline

An Art of Review on Conceptual based Information Retrieval

2021, Webology

https://doi.org/10.14704/WEB/V18I1/WEB18026

Abstract

Basically keywords are used to index and retrieve the documents for the user query in a conventional information retrieval systems. When more than one keywords are used for defining the single concept in the documents and in the queries, inaccurate and incomplete results were produced by keyword based retrieval systems. Additionally, manual interventions are required for determining the relationship between the related keywords in terms of semantics to produce the accurate results which have paved the way for semantic search. Various research work has been carried out on concept based information retrieval to tackle the difficulties that are caused by the conventional keyword search and the semantic search systems. This paper aims at elucidating various representation of text that is responsible for retrieving relevant search results, approaches along with the evaluation that are carried out in conceptual information retrieval, the challenges faced by the existing research to expati...

References (25)

  1. Jiang, Y. (2020). Semantically-enhanced information retrieval using multiple knowledge sources. Cluster Computing, 1-20.
  2. Yu, B. (2019). Research on information retrieval model based on ontology. EURASIP Journal on Wireless Communications and Networking, 1, 1-8.
  3. Furnas, G.W., Deerwester, S., Durnais, S.T., Landauer, T.K., Harshman, R.A., Streeter, L.A., & Lochbaum, K.E. (2017). Information retrieval using a singular value decomposition model of latent semantic structure. In ACM SIGIR Forum, New York, NY, USA: ACM 51(2), 90-105.
  4. Liu, H., Liu, Y.S., Pauwels, P., Guo, H., & Gu, M. (2017). Enhanced explicit semantic analysis for product model retrieval in construction industry. IEEE transactions on industrial informatics, 13(6), 3361-3369.
  5. Fu, Z., Huang, F., Ren, K., Weng, J., & Wang, C. (2017). Privacy-preserving smart semantic search based on conceptual graphs over encrypted outsourced data. IEEE Transactions on Information Forensics and Security, 12(8), 1874-1884.
  6. Hua, Y., Jiang, H., & Feng, D. (2015). Real-time semantic search using approximate methodology for large-scale storage systems. IEEE Transactions on Parallel and Distributed Systems, 27(4), 1212-1225.
  7. Fu, Z., Huang, F., Sun, X., Vasilakos, A., & Yang, C.N. (2016). Enabling semantic search based on conceptual graphs over encrypted outsourced data. IEEE Transactions on Services Computing, 1-11.
  8. Colace, F., De Santo, M., Greco, L., & Napoletano, P. (2015). Weighted word pairs for query expansion. Information Processing & Management, 51(1), 179-193.
  9. Hahm, G.J., Lee, J.H., & Suh, H.W. (2015). Semantic relation based personalized ranking approach for engineering document retrieval. Advanced Engineering Informatics, 29(3), 366-379.
  10. Hahm, G.J., Yi, M.Y., Lee, J.H., & Suh, H.W. (2014). A personalized query expansion approach for engineering document retrieval. Advanced Engineering Informatics, 28(4), 344-359. http://www.webology.org
  11. Agirre, E., De Lacalle, O.L., & Soroa, A. (2014). Random walks for knowledge-based word sense disambiguation. Computational Linguistics, 40(1), 57-84.
  12. Lu, Y., He, H., Zhao, H., Meng, W., & Yu, C. (2011). Annotating search results from web databases. IEEE Transactions on Knowledge and Data Engineering, 25(3), 514-527.
  13. Kara, S., Alan, Ö., Sabuncu, O., Akpınar, S., Cicekli, N.K., & Alpaslan, F.N. (2012). An ontology-based retrieval system using semantic indexing. Information Systems, 37(4), 294-305.
  14. Lin, H.T., Chi, N.W., & Hsieh, S.H. (2012). A concept-based information retrieval approach for engineering domain-specific technical documents. Advanced Engineering Informatics, 26(2), 349-360.
  15. Dragoni, M., Da Costa Pereira, C., & Tettamanzi, A.G. (2012). A conceptual representation of documents and queries for information retrieval systems by using light ontologies. Expert Systems with applications, 39(12), 10376-10388.
  16. Egozi, O., Markovitch, S., & Gabrilovich, E. (2011). Concept-based information retrieval using explicit semantic analysis. ACM Transactions on Information Systems (TOIS), 29(2), 1-34.
  17. Liu, L., & Özsu, M.T. (Eds.). (2009). Encyclopedia of database systems. New York, NY, USA: Springer, 6.
  18. Lamberti, F., Sanna, A., & Demartini, C. (2008). A relation-based page rank algorithm for semantic web search engines. IEEE Transactions on Knowledge and Data Engineering, 21(1), 123-136.
  19. Kao, B., Lee, J., Ng, C.Y., & Cheung, D. (2000). Anchor point indexing in Web document retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 30(3), 364-373.
  20. Jinxi, X., & Bruce Croft, W. (1996). Query Expansion Using Local and Global Document Analysis. Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, 4-11.
  21. Voorhees, E.M. (1994). Query expansion using lexical-semantic relations. In SIGIR'94, Springer, London, 61-69.
  22. Voorhees, E.M. (1993). Using WordNet to disambiguate word senses for text retrieval. In Proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval, 171-180.
  23. Belkin, N.J., & Croft, W.B. (1992). Information filtering and information retrieval: Two sides of the same coin?. Communications of the ACM, 35(12), 29-38.
  24. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407.
  25. McGill, M.J. (1983). Introduction to Modern Information Retrieval McGraw-Hill. New York.