Academia.eduAcademia.edu

Outline

Tilings of a Honeycomb Strip and Higher Order Fibonacci Numbers

2022

https://doi.org/10.48550/ARXIV.2203.11761

Abstract

In this paper we explore two types of tilings of a honeycomb strip and derive some closed form formulas for the number of tilings. Furthermore, we obtain some new identities involving tribonacci numbers, Padovan numbers and Narayana’s cow sequence and provide combinatorial proofs for several known identities about those numbers.

References (12)

  1. J. Bodeen, S. Butler, T. Kim, X. Sun, S. Wang, Tiling a Strip with Triangles, Electron. J. Combin., 21(1), 2014.
  2. T. Došlić, Block allocation of a sequential resource, Ars Math. Contemp. 17 (2019) 79-88.
  3. T. Došlić, I. Zubac, Counting maximal matchings in linear polymers, Ars Math. Contemp. 11 (2016) 255-276.
  4. G. Dresden, J. Ziqian, Tetranacci Identities via Hexagonal Tilings, Fibonacci Quart., 2022.
  5. G. Dresden, M. Tulskikh, Tiling a (2 × n)-Board with Dominos and L-Shaped Trominos, J. Integer Seq., 24, 2021.
  6. R. Frontczak, Some Fibonacci-Lucas-Tribonacci-Lucas identities, Fibonacci Quart 56 (2018) 263-274.
  7. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison- Wesley, 1994.
  8. M. Katz, C. Stenson, Tiling a (2 × n)-Board with Squares and Dominoes, J. Inte- ger Seq., 12, 2009.
  9. L. Lovász, M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
  10. OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 2020. Avail- able at https://oeis.org.
  11. G. Pólya, Mathematics and plausible reasoning, in two volumes, Princeton Univer- sity Press, Princeton, N. J., 1954.
  12. G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc. (3) 11 (1961), 419-433.