Academia.eduAcademia.edu

Outline

Spectroscopy of the Quarkonium Systems for Heavy Quarks

2020, Journal of Nuclear and Particle Physics

https://doi.org/10.5923/J.JNPP.20201001.03

Abstract

The study of the spectroscopy of bound states of quarkonium systems like and meson in the quark model framework with phenomenological potentials is motivated by quantum chromodynamics (QCD). It is found that analysis of the mass spectra of these systems is effectively given by the nonrelativistic Schrodinger's equation. There are several methods which are used to solve Schrodinger's equation with a general polynomial potential one of them is the Nikiforov-Uvarov (NU) method. It’s one of the effective methods which gives the energy eigenvalues and eigenstates for our potential. The results obtained are in good agreement with the experimental data and are better than previous theoretical studies.

References (46)

  1. F.Halzem, A.Martin, Quarks and Leptons an Introductory Course in Modern Particle Physics, Wiley publication, 1984.
  2. David Griffiths, introduction to elementary particles, Wiley publication, 1987.
  3. Donald H. Perkins, Introduction to High Energy Physics, Cambridge university press, 2000.
  4. B. R. Martin, Graham G Shaw, 2nd Edition, Particle Physics, the Manchester Physics Series, 1997.
  5. B. H. Bransden and C. J. Joachain, Quantum Mechanics, Prentice Hall, 2000.
  6. L. D. Landau and E. M. LIFSHITZ, Quantum mechanics, Butterworth Heinemann, 1981.
  7. David Griffiths, introduction to elementary particle, Wiley -VCH, 2008.
  8. Nouredine Zettili, Quantum Mechanics Concepts and Applications, John Wiley, 2009.
  9. Cüneyt Berkdemir, theoretical concept of quantum mechanics, In Tech, 2012.
  10. F Yaşuk, C Berkdemir and A Berkdemir, Exact solutions of the Schrodinger equation with non-central potential by the Nikiforov-Uvarov method, 38, 6579 (2005).
  11. Yan-Fu Cheng and Tong-Qing Dai, Exact solution of the Schrödinger equation for the modified Kratzer potential plus a ring-shaped potential by the Nikiforov-Uvarov method, Phys. Scr. 75, 274 (2007).
  12. Ö zlem Ye, silta, PT/non-PT symmetric and non-Hermitian Pöschl-Teller-like solvable potentials via Nikiforov-Uvarov method, Phys. Scr. 75, 41 (2007).
  13. H. Hassanabadi 1 , S. Zarrinkamar 2 and A.A. Rajabi, Exact Solutions of D-Dimensional Schrödinger Equation for an Energy-Dependent Potential by NU Method, Communications in Theoretical Physics journal, 55, 541 (2011).
  14. Mohammad R Setare and S Haidari, Bound states of the Dirac equation with some physical potentials by the Nikiforov-Uvarov method, Phys. Scr. 81, 015201 (5pp) (2010).
  15. Birkhauser-Boston;
  16. H. Karayer, D. Demirhan, and F. Büyükkılıç, math.phys.j. 56, 063504 (2015).
  17. A. Kumar Ray and P. C. Vinodkumar, J. Phys. 66, 953 (2006),; Said Laachir and Aziz Laaribi, Inter. J. of. Math. Compu. Phys. Electr. and Compu. Eng. 7(1) (2013);
  18. Hakan Ciftci, Richard L. Hall, and Nasser Saad, Phys. Rev. A 72, 022101 (2005).
  19. E. J. Eichten and C Quigg, Phys. Rev. D 49, 5845 (1994);
  20. Mary Alberg, L.Wilets, Phys Lett. A 286, 7 (2001).
  21. D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. 67, 014027 (2003);
  22. B. Ita, P. Tchoua, E. Siryabe, G. E. Ntamack, Inter. J. of Theor. And Math. Phys. 4(5), 173 (2014);
  23. H. Goudarzi 1 and V. Vahidi, Adv. Studies Theor. Phys. 5(10), 469 (2011).
  24. R. Kumar and F. Chand, Commun. Theor. Phys. 59, 528 (2013);
  25. M. Abu-Shady, Inter. J. of Appl. Math. and Theor. Phys. 2(2), 16 (2016).
  26. A. Al-Jamel and H. Widyan, Appl. Phys. Rese. 4, 94 (2013);
  27. CHANG ChaoHsi and WANG GuoLi, SCI. chinese 53(11), 2025 (2010).
  28. N. V. Masksimenko and S. M. Kuchin, Russ. Phy. J. 54, 57 (2011);
  29. E. Eichten, T. Kinoshita, K. Gottfried, et al., Phys. Rev. Lett. 34, 369 (1975).
  30. Z. Ghalenovi, A. A. Rajabi, A. Tavakolinezhad, Mod. Phys. inter. J. 5(6), 1250057 (2012); Juan-Juan Niu, a Lei Guo, b, Hong-Hao Ma,c, Shao-Ming Wang, Eur. Phys. J. C 78, 657 (2018).
  31. S. M. Kuchin and N. V. Maksimenko, Univ. J. Phys. Appl. 7, 295 (2013);
  32. R. Faccini, BABAR-CONF-07/035
  33. R. Kumar and F. Chand, Phys. Scr. 85, 055008 (2012);
  34. Yang Li, Pieter Maris, and James P.Vary, Phys. Rev. D 96, 016022 (2017).
  35. J. Beringer et al. [Particle Data Group], Phys. Rev. D 86, 1 (2012);
  36. Byungsik Hong, Overview of quarkonium production in heavy-ion collisions at LHC, published by EDP Sciences (2015).
  37. Yu-Qi Chen 1'3, Yu-Ping Kuang 1'2'3, General relations of heavy quark-antiquark potentials induced by reparameterization invariance, Z. Phys. C 67, 627 (1995).
  38. Q ¯ Q (Q ∈ {b, c}) spectroscopy using Cornell potential, N. R. Soni, * B. R. Joshi, † R. P. Shah, ‡ H. R. Chauhan, § and J. N. Pandya, European Physical Journal C 78(7), (2017).
  39. D. Ebert, R. N. Faustov, and V. O. Galkin, Spectra of heavy mesons in the Bethe-Salpeter approach,Eur. Phys. J. C 71, 1825 (2011).
  40. W.-J. Deng, H. Liu, L.-C. Gui, and X.-H. Zhong, Properties of Low-Lying Charmonium States in a Phenomenological Approach, Phys. Rev. D 95, 034026, 1608.00287 (2017).
  41. C. S. Fischer, S. Kubrak, and R. Williams, Spectra of heavy mesons in the Bethe-Salpeter approach,Eur. Phys. J. A 51, 1409.5076, 10 (2015).
  42. B.-Q. Li and K.-T. Chao, Higher Charmonia and X,Y,Z states with Screened Potential, Phys. Rev. D 79, 094004 (2009).
  43. B.-Q. Li and K.-T. Chao, Bottomonium Spectrum with Screened Potential, Commun. Theor. Phys. 52, 0909. 1369, 653 (2009).
  44. N. Devlani, V. Kher, and A. K. Rai, Masses and electromagnetic transitions of the B c mesons, Eur. Phys. J. A 50, 154 (2014).
  45. S. Godfrey, Phys. Rev. D 70, Spectroscopy of Bc mesons in the relativized quark model, 054017, hep-ph/0406228, (2004).
  46. A. P. Monteiro, M. Bhat, and K. B. Vijaya Kumar, cb¯ spectrum and decay properties with coupled channel effects, Phys. Rev. D 95, 1608.05782, 054016 (2017).