Field Measurements of Terrestrial and Martian Dust Devils
2016, Space Science Reviews
https://doi.org/10.1007/S11214-016-0283-YAbstract
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimension, but only limited vertical constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of
References (150)
- R.A. Bagnold, The Physics of Blown Sand and Desert Dunes. (Dover Publ., Inc., Mineola, New York, 1941)
- M. Balme, and R. Greeley , Dust devils on Earth and Mars. Reviews of Geophysics, 44, RG3003
- M.R. Balme, M.R., Pathare, A., Metzger, S.M., Towner, M.C., Lewis, S.R., Spiga, A., Fenton, L.K., Renno, N.O., Elliott, H.M., Saca, F.A., Michaels, T.I., Russell, P., Verdasca, J. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth, Icarus, 221(2), pp. 632-645 (2012)
- M., Balme, S. Metzger, M. Towner, T. Ringrose, R. Greeley, and J. Iversen, Friction wind speeds in dust devils: A field study, Geophys. Res. Lett., 30(16), 1830 (2003) doi:10.1029/2003GL017493
- D. Banfield, Mars Acoustic Anemometer, AGU Fall Meeting 2012, San Francisco, California, USA, Poster presentation, http://abstractsearch.agu.org/meetings/2012/FM/P23A-1916.html (2012)
- D. Banfield, D., Atmospheric Observations from the Mars Insight Mission, Fifth international workshop on the Mars atmosphere: Modelling and observations, Oxford, UK, Oral presentation, http://www-mars.lmd.jussieu.fr/oxford2014/abstracts/banfield_oxford2014.pdf (2014)
- A.J. Bedard, Low frequency atmospheric acoustic energy associated with vortices produced by thunderstorms, Mon. Weather Rev., 241-243 (2005)
- F. Bell, F., Dust devils and aviation, report, Meteorol. Note 27, Aust. Bur. of Meteorol., Melbourne, Victoria (1967) J-J Berthelier, ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER (2002)
- C. Bettaniniet al. (2014), The DREAMS experiment on the ExoMars 2016 mission for the study of Martian environment during the dust storm season, MetroAeroSpace, vol. 167, no. 173, pp. 29-30, (2014) doi: 10.1109/MetroAeroSpace.2014.6865914
- H.B. Bluestein,and A. L. Pazmany, Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment, Bull. Am. Meteorol. Soc., 81, 2939-2951 (2000)
- J.J. Carroll, and J. A. Ryan, Atmospheric vorticity and dust devil rotation, J. Geophys. Res., 75, 5179-5184 (1970)
- W.D. Crozier, Dust devil properties. J. Geophys. Res. 75, 4583-4585 (1970)
- R. Davy, J. A. Davies, P. A. Taylor, C. Lange, W. Weng, J. Whiteway, and H. P. Gunnlaugson, Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes, J. Geophys. Res., 115, E00E13 (2010) doi:10.1029/2009JE003444
- S.J. Desch, and J.N. Cuzzi, 2000. The Generation of Lightning in the Solar Nebula. Icarus 143, 87-105 (2000) doi:10.1006/icar.1999.6245
- M., Domínguez, V. Jiménez, J. Ricart, L. Kowalski, J. Torres, S. Navarro, J. Romeral and L. Castañer, A hot film anemometer for the Martian atmosphere, Planet. Space Sci., 56(8), 1169-1179 (2008) doi:10.1016/j.pss.2008.02.013
- N. Duff, and D.J. Lacks, Particle dynamics simulations of triboelectric charging in granular insulator systems. J. Electrost. 66, 51 (2008) doi:10.1016/j.elstat.2007.08.005
- Esposito, F. et al., 2015. In preparation.
- R. Edmonds, (2014), Examination of two martian atmosphere phenomena: Dust devil acoustics and gravity wave forcing of dust storm development, PhD dissertation, New Mexico State University, p. 223
- M.D. Ellehoj, H. P. Gunnlaugsson, P. A. Taylor, H. Kahanpää,4 K. M. Bean, B. A. Cantor,6 B. T. Gheynani, L. Drube,1 D. Fisher, A.-M. Harri,4 C. Holstein-Rathlou, M. T. Lemmon, M. B. Madsen, M. C. Malin,6 J. Polkko, P. H. Smith, L. K. Tamppari, W. Weng, and J. Whiteway, Convective vortices and dust devils as the Phoenix Mars mission landing site, J. Geophys. Res., 115, E00E16 (2010) doi:10.1029/2009JE003413.
- F. Esposito, R. Molinaro, C.I. Popa, C. Molfese, F. Cozzolino, L. Marty, K. Taj-Eddine, G. Di Achille, G. Franzese, S. Silvestro, and G.C. Ori, The role of atmospheric electric field in the dust lifting process, Geophys. Res. Lett., in-press (2016)
- F. Esposito, MEDUSA: Observation of atmospheric dust and water vapor close to the surface of Mars, Mars , vol. 6, pp. 1-12, http://www.marsjournal.org/contents/2011/0001/ (2011) doi:10.1555/mars.2011.0001
- L. Fenton, D. Reiss, M. Lemmon, B. Marticorena, S. Lewis, B. Cantor, Orbital observations of dust lofted by daytime convective turbulence, Space Science Reviews (2016), doi:10.1007/s11214-016-0243-6
- L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246-262 (2015). doi:10.1016/j.icarus2015.07.028
- F. Ferri, P.H. Smith, M.T. Lemmon, and N. Renno , Dust devils as observed by Mars Pathfinder, J. Geophys. Res., 108(E12), 5133 (2003) doi:10.1029/2000JE001421.
- W.D. Flower, Sand devils. London Meteorol. Off. Prof. Notes 5(71), 1-16 (1936)
- K.M. Forward, Lacks, D. J., Sankaran, R. M., 2009. Particle-size dependent bipolar charging of Martian regolith simulant, Geophys. Res. Lett., 36, Iss. 13, CiteID L13201 (2009)
- G.D. Freier, 1960. The electric field of a large dust devil. J. Geophys. Res. 65, 3504. (1960) doi:10.1029/JZ065i010p03504
- S.D. Fuerstenau , Solar heating of suspended particles and the dynamics of martian dust devils, Geophys. Res. Lett., 33, 19, (2006) 10.1029/2006GL026798.
- E.W.B., Nature, 18, 2 (1948)
- D.A. Gillette, I. H. Blifford and D. W. Fryrear, Influence of wind velocity on size distributions of aerosols generated by wind erosion of soils, J. Geophys. Res. 79, 4068-75 (1974)
- J. Gómez-Elvira, J., et al., REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Sci Rev, 170, 583-640 (2012) doi:10.1007/s11214-012-9921-1
- J. Gómez-Elvira, J., et al., Curiosity's rover environmental monitoring station: Overview of the first 100 sols, J. Geophys. Res. Planets, 119, 1680-1688 (2014) doi:10.1002/2013JE004576.
- C.G. Grant, Dust devils in the sub-arctic, Weather, 4, 402-403 (1949)
- R. Greeley, and J.D. Iversen, Wind as a geological process, Cambridge Planetary Science Series, (Cambridge University Press, 1985) ISBN 0521356927.
- R. Greeley, et al.. Wind related features in Gusev crater, Mars. J. Geophys. Res., 108(E12), 8077 (2003).
- R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, and S.D. Thompson (2006), Active dust devils in Gusev Crater, Mars: Observations from the Mars Exploration Rover Spirit, J. Geophys. Res., 111(E12) (2006) 10.1029/2006JE002743.
- R. Greeley, Waller, D.A., Cabrol, N.A., Landis, G.A., Lemmon, M.T., Nekarase, L.V., Pendelton Hoffer, M., and S.D. Thompson (2010), Gusev Crater, Mars: Observations of three dust devil seasons, J. Geophys. Res., 115 (2010)
- J. Grotzinger, et al, Mars science Laboratory mission and science investigation, Space Science Reviews, 170(1), 5-56 (2012) doi:10.1007/s11214-012-9892-2.
- H.P. Gunnlaugsson, et al., Telltale wind indicator for the Mars Phoenix lander, J. Geophys. Res., 113, E00A04 (2008) doi:10.1029/2007JE003008
- R.M. Haberle, M. M. Joshi, J. R. Murphy, J. R. Barnes, J. T. Schofield, G. Wilson, M. Lopez-Valverde, J. L. Hollingsworth, A. F. C. Bridger, and J. Schaeffer, General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res., 104(E4), 8957-8974 (1999) doi:10.1029/1998JE900040
- R.M. Haberle, J. Gómez-Elvira, M. de la Torre Juárez, A.-M. Harri, J. L. Hollingsworth, H. Kahanpää, M. A. Kahre, M. Lemmon, F. J. Martín-Torres, M. Mischna, J. E. Moores, C. Newman, S. C. R. Rafkin, N. Rennó, M. I. Richardson, J. A. Rodríguez-Manfredi, A. R. Vasavada, M.-P. Zorzano-Mier, and REMS/MSL Science Teams (2014), Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission, J. Geophys. Res. Planets, 119, 440-453 (2014) doi:10.1002/2013JE004488
- J. Hallett, and T. Hoffer, Dust devil systems, Weather, 26, 247-250 (1971)
- W.R. Harper, Contact and Frictional Dissipation (Clarendon Press, Oxford, 1967).
- I.I. Inculet, G.S. Peter Castle, and G. Aartsen, Generation of bipolar electric fields during industrial handling of powders. Chem. Eng. Sci. 61, 2249-2253 (2006) doi:10.1016/j.ces.2005.05.005
- A.-M, Harri, M. Genzer, O. Kemppinen, H. Kahanpää, J. Gomez-Elvira, J. A. Rodriguez-Manfredi, R. Haberle, J. Polkko, W. Schmidt, H. Savijärvi, J. Kauhanen, E. Atlaskin, M. Richardson, T. Siili, M. Paton, M. de la Torre Juarez, C. Newman, S. Rafkin, M. T. Lemmon, M. Mischna, S. Merikallio, H. Haukka, J. Martin-Torres, M.-P. Zorzano, V. Peinado, R. Urqui, A. Lapinette, A. Scodary, T. Mäkinen, L. Vazquez, N. Rennó, and the REMS/MSL Science Team, Pressure observations by the Curiosity rover: Initial results, J. Geophys. Res. Planets, 119, 82-92 (2014) doi:10.1002/2013JE004423
- E. Harrison, Barth, F. Esposito, J. Merrison, F. Montmessin, K. L. Aplin, C. Borlina, J.J. Berthelier, G. Déprez, W. M. Farrell, I. M. P. Houghton, N. O. Renno, K. A. Nicoll, S. N. Tripathi, and M. Zimmerman , Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity, Space Science Review (2016) DOI: 10.1007/s11214-016-0241-8
- M. Hecht, M. D. Tratt, D. Catling, and S. Samulon, MATADOR Dust Devil Campaign (2001)
- G.D. Hess and K. T. Spillane, Characteristics of dust devils in Australia, J. Appl. Meteorol., 29, 498-507 (1990)
- S.L. Hess, R. M. Henry, C. B. Leovy, J. A. Ryan, and J. E. Tillman (1977), Meteorological results from the surface of Mars: Viking 1 and 2, J. Geophys. Res., 82(28), 4559-4574, (1977) doi:10.1029/JS082i028p04559
- C. Holstein-Rathlou et al., Winds at the Phoenix landing site, J. Geophys. Res., 115, E00E18 (2010) doi:10.1029/2009JE003411
- R.G. Horn, Smith, D.T., and Grabbe, A., Contact electrification induced by monolayer modification of a surface and relation to acid-base interactions, Nature, 366, 442-443 (1993) doi:10.1038/366442a0.
- M.S. Howe, Theory of vortex sound, Cambridge Uni Press, Cambridge UK (2003)
- J. Ito, Niino, H. Particle image velocimetry of a dust devil observed in a desert (2014) Scientific Online Letters on the Atmosphere, 10 (1), pp. 108-111 (2014)
- R.L. Ives, Behavior of dust devils, Bull. Am. Meteorol. Soc., 28, 168-174 (1947)
- B. Jackson, R. Lorenz, Dust devil populations and statistics, Space Science Reviews-accepted (2016)
- B. Jackson, and R. Lorenz, A multiyear dust devil vortex survey using an automated search of pressure time series, J. Geophys. Res., 120(2), 401-412 (2015) doi:10.1092/2014JE004712.
- T.L. Jackson, W.M. Farrell, IEEE T. Geosci. Remote 44, 2942 (2006) doi:10.1109/TGRS.2006.875785
- H. Kahanpää, C. Newman, J. Moores, M-P. Zorzano, J. Martín-Torres, S. Navarro, A. Lepinette, M. T. Lemmon, B. Cantor, P. Valentín-Serrano, A. Ullán and W. Schmidt, Convective vortices and dust devils at the MSL landing site: annual variability, J. Geophys. Res. Planets, accepted (2016)
- M. Kahre, J.Murphy, and R. Haberle, Modeling the martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model, J. Geophys. Res. Planets, 111, E6 (2006)
- J.C. Kaimal, and J. A. Bussinger, Case studies of a convective plume and a dust devil, J. Appl. Meteorol., 9, 612-620 (1970)
- M. Klose, B.C. Jemmet-Smith, H. Kahanpää, M. Kahre, P. Knippertz, M. Lemmon, S. Lewis, R. Lorenz, L. Neakrase, C. Newman, M.Patel, D. Reiss, A. Spioga, P.Whelley, Space Science Reviews, doi: 10.1007/s11214-016-0261-4 (2016)
- J.F. Kok, and N.O.Renno, Enhancement of the emission of mineral dust aerosols by electric forces. Geophys. Res. Letters, 33, L19S10 (2006)
- J.F. Kok, and N.O. Renno, N.O., Electrostatics in wind-blown sand. Phys. Rev. Lett., 100, 014501
- D.J., Lacks, and A. Levandovsky, Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J. Electrostat. 65, 107 (2007)
- M.V. Kurgansky, Size distribution of dust devils in the atmosphere, Izvestiya -Atmospheric and Ocean Physics, 42 (3), pp. 319-325 (2006) Kurgansky et al., Dust devil steady-state structure from a fluid dynamic perspective, Spqace Science Rview (2016) in revision
- M.V. Kurgansky, A. Montecinos, V. Villagran, S.M. Metzger, Micrometeorological Conditions for Dust-Devil Occurrence in the Atacama Desert Boundary-Layer Meteorol (2011) 138:285-298 (2011) doi10.1007/s10546-010-9549-1
- R.I. Lambeth, On the measurement of dust devil parameters. Bull. Am. Meteorol. Soc., 47, 522-526
- G.A. Landis, P.P. Jenkins, Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder, J. Geophys. Res., 105(E1), 1855-1857, doi:10.1029/1999JE001029
- J. Latham, and C.D. Stow, A laboratory investigation of the electrification of snowstorms. Q. J. R. Meteorol. Soc. 94, 415 (1968)
- M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell III, S.W. Squyres. Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science 306, 1753-1756 (2004).
- M.T. Lemmon, M.J. Wolff, J.F. Bell III, M.D. Smith, B.A. Cantor and P.H. Smith, Dust aerosol, clouds and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96-111, (2015)
- B. Lenoir, D. Banfield, and D. A. Caughey, Accommodation Study for an Anemometer on a Martian Lander. J. Atmos. Oceanic Technol., 28, 210-218 (2011) doi:10.1175/2010JTECHA1490.
- E. Leonard-Pugh, C. Wilson, S. Calcutt, and L. Davis, Capacitive Ultrasonic Transducer Development for Acoustic Anemometry on Mars, 44th annual meeting of the Division for Planetary Sciences of the American Astronomical Society, Reno, NV, USA, Poster presentation, http://adsabs.harvard.edu/abs/2012DPS....4421523L (2012)
- P. Lognonné, and B. Mosser, Planetary seismology. Surveys in Geophysics 14, 239-302 (1993)
- P. Lognonné, W. B. Banerdt, K. Hurst, D. Mimoun, R. Garcia, M. Lefeuvre, J. Gagnepain-Beyneix, M. Wieczorek, A. Mocquet, M. Panning, E. Beucler, S. Deraucourt, D. Giardini, L. Boschi, U.
- Christensen, W. Goetz, T. Pike, C. Johnson, R. Weber, K. Larmat, N. Kobayashi, J. Tromp, Insight and Single-Station Broadband Seismology: From Signal and Noise to Interior Structure Determination 43rd Lunar and Planetary Science Conference, Houston TX March 2012, Abstract #1983 (2012) Lorenz 2016 ??? (wind sensors with pressure loggers)
- R.D. Lorenz, Heuristic estimation of dust devil vortex parameters and trajectories from single-station meteorological observations: Application to InSight at Mars (2016) Icarus, 271, pp. 326-337 (2-16)
- R.D. Lorenz, Vortex encounter rates with fixed barometer stations: Comparison with visual dust devil counts and large eddy simulations. J. Atmos. Sci. 71, 4461-4472 (2014)
- R. Lorenz, On the statistical distribution of dust devil diameter, (2011) Icarus, 215 (1), pp. 381-390
- R.D. Lorenz, Power law distribution of pressure drops in dust devils: Observation techniques and Earth-Mars comparison, Planet. Space Sci., 60, 370-375 (2012) doi:10.1016/j.pss.2011.11.003
- R.D. Lorenz, R.D, Power law of dust devil diameters on Mars and Earth, Icarus, 203 (2), pp. 683-684
- R.D. Lorenz, M. Balme, Z Gu, et al., History and application of dust devil studies, Space Sci Rev. (2016) doi:10.1007/s11214-016-0239-2
- R.D. Lorenz, and P.D. Lanagan, A barometric survey of dust devil vortices on a desert playa. Bound.-Layer Meteorol. 53, 555-568 (2014) doi:10.1007/s10546-014-9954-y R.D. Lorenz, and B.K. Jackson, Dust devils and dustless vortices on a desert playa observed with surface pressure and solar flux logging, GeoResJ, Volume 5, pp 1-11 (2015) doi:10.1016/j.grj.2014.11.002
- R.D. Lorenz, and D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162-164 (2015)
- R.D. Lorenz, and K. S. Sotzen, Buoyant thermal plumes from planetary landers and rovers: Application to sizing of meteorological masts, Planet. Space Sci., 90, 81-89 (2014) doi:10.1016/j.pss.2013.10.011
- R.D. Lorenz, and D. Christie, Dust devil signatures in infrasound records of the international monitoring system. Geophys. Res. Lett. 42(6), 2009-2014 (2015).
- R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamurak, D. Mimoun, and W.B. Banerdt, Seismometer Signature of Dust Devils : Implication for InSight, 2015 European and Planetary Science Conference, Nantes 2015a.
- R.D. Lorenz, R.D., Kedar, S., Murdoch, N. ,Lognonné, P., Kawamurak T., Mimoun, D., Banerdt, W. B., Seismometer Detection of Dust Devil Vortices by Ground Tilt, Bull. Seism. Soc. Amer., BSSA-S-15-00169 (2015).
- R. Lorenz, and J. Radebaugh, Dust devils in thin air: vortex observations at a high elevation Mars analog site in the Argentinian puna. Geophys. Res. Lett. 43 (2016) doi:10.1002/2015GL067412
- J. Lowell, and W.S. Truscott, Triboelectrification of identical insulators. II. Theory and further experiments. J. Phys. D Appl. Phys. 19, 1281-1298 (1986) doi:10.1088/0022-3727/19/7/018
- J.P. Mason, M.R. Patel, and S.R. Lewis, Radiative transfer modelling of dust devils, Icarus, 223, 1-10
- J.O. Mattsson, Nihlén, and W. Yue, Observations of dust devils in a semi-arid district of southern Tunisia, Weather, 48, 359-363 (1993)
- S., Maurice, R.C., Wiens, W. Rapin, D. Mimoun, X., Jacob, B. Betts, S. Clegg, A. Cousin, O. Gasnault, O. Forni, J. Lasue, P.-Y. Meslin, J. F. Bell, G. Delory, A Microphone Supporting LIBS Investigation on Mars, Lunar and Planetary Science Conference, 47, 3044 (2016)
- J.P. Merrison, H.P. Gunnlaugsson, K. Kinch, T.L. Jacobsen, A.E. Jensen, P. Nørnberg, and H. Wahlgreen, An integrated laser anemometer and dust accumulator for studying wind-induced dust transport on Mars, Planet. Space Sci., 54(11), 1065-1072 (2006) doi:10.1016/j.pss.2006.05.026
- S. Metzger, Balme, M.; Pathare, A.; Renno, N.; Towner, M.; Spiga, A.; Elliott, H. High-Resolution Dust Devil Sampling for Sediment Loads, Wind Speeds, Temperature and Pressure Excursions. 42nd Lunar and Planetary Science Conference, Texas. Abstr# 1608 (2011)
- S.M. Metzger, Dust devils as aeolian transport mechanisms in southern Nevada and in the Mars Pathfinder landing site, Ph.D. thesis, Univ. of Nev., Reno (1999)
- S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, and M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder camera, Geophys. Res. Lett., 26(18), 2781-2784 (1999)
- S.M. Metzger, M. Kurgansky, A. Montecinos, V. Villagram, and H. Verdejo, Chasing dust devils in Chile's Atacama Desert, LPSC Abstract 2564 (2010)
- J.E. Moores J. E., et al., Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover, Icarus, 249 (15), 129-142 (2015) doi:10.1016/j.icarus.2014.09.02
- J.R. Murphy, and S. Nelli, Mars Pathfinder convective vortices: Frequency of occurrence, Geophys. Res. Letters, 29 (23), (2002) doi:10.1029/2002GL015214.
- J. Murphy, C.B. Leovy, and J. Tillman, Observations of martian surface winds ath the Viking Lander 1 site, J. Geophys. Res., 95, B9 (1990) doi:10.1029/JB095iB09o14555
- L.D.V. Neakrase, and R. Greeley, Dust devil sediment flux on Earth and Mars: Laboratory simulations, Icarus, 206, 306-318 (2010) doi:10.1016/j.icarus.2009.08.028
- A.M.C. Oke, D. Dunkerley, and N.J. Tapper, Willy-willies in the Australian landscape: Sediment transport characteristics, J. Arid Envrions., 71, 216-228 (2007)
- A.V. Pathare, Balme, M.R., Metzger, S.M., Spiga, A., Towner, M.C., Renno, N.O., Saca, F. Assessing the power law hypothesis for the size-frequency distribution of terrestrial and martian dust devils, Icarus, 209 (2), pp. 851-853 (2010)
- J.B. Pollack, D.S. Coburn, F. M. Flasar, R. Kahn, C.E. Carslton, and D. Pidek, Properties and effects of dust particles suspended in the martian atmosphere, J. Geophys. Res., 84, B6, 2929-2945 (1979)
- A. Powell, Theory of vortex sound, J. Acoust. Soc. Am., 36-1, 177-195 (1964)
- J. Raack, D. Reiss, G.G. Ori, and K. Taj-Eddine, Vertical grain size distributions in dust devils: Analyses of in situ sampled from southern Morocco, EPSC Abstract, EPSC2012-427-1 (2014)
- S. Rafkin, D. Banfield, J. Silver, K. Nowicki, R. Dissly, and A. Stanton (2013), An Instrument to Measure Turbulent Fluxes in the Atmosphere of Mars and other Planets, European Planetary Science Congress 2013, EPSC Abstracts Vol. 8, EPSC2013-575, London, UK, Poster presentation, http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-575.pdf (2013)
- D. Reiss, A Spiga, and G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations, Icarus, 277, 8-20 (2014)
- N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, o.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M.Farrell, C.J. Watts, J. Garatuza, M. Parker, and A. Carswell, MATADOR 2002: A pilot field experiment on convective plumes and dust devils. J. Geophys. Res., Vol. 109, E07001 (2004) doi:10.1029/2003JE002219.
- N.O. Renno, A.A. Nash, J. Lunine, and J. Murphy, Martian and terrestrial dust devils: Test of a scaling theory using Pathfinder data, J. Geophys. Res., 105(E1),1859-1865 (2000)
- N.O. Renno, M.L. Burkett, and M.O. Larkin, A simple thermodynamical theory for dust devils, J. Atmos. Sci., 55, 3244-3252 (1998)
- T.J. Ringrose, M. C. Towner, and J. C. Zarnecki, Convective vortices on Mars: A reanalysis of Viking Lander 2 meteorological data, sols 1-60, Icarus, 163(1), 78-87 (2003) doi:10.1016/S0019-1035(03)00073-3
- J.A. Rodriguez-Manfredi et al., MEDA: An Environmental and Meteorological Package for Mars 2020, 45th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, Poster presentation, http://ssed.gsfc.nasa.gov/IPM/PDF/1125.pdf (2014)
- J.A. Ryan, and R.D. Licich, Possible dust devils, vortices on Mars, J. Geophys. Res, 88(C15), 11005-11011 (1983)
- J.A. Ryan, and J.J. Carroll, Dust devil wind velocities: Mature state. J. Geophys. Res., 75, 531-541
- D.S. Schmidt, R.A. Schmidt, and J.D. Dent, Electrostatic force on saltating sand. J. Geophys. Res., Vol. 103, No. D8, 8997-9001 (1998)
- R.L. Schwiesow, R. E. Cupp, M. J. Post, P. C. Sinclair, and R. F. Abbey, Velocity structures of waterspouts and dust devils as revealed by Doppler lidar measurements, Bull. Am. Meteorol. Soc., 58, 677 (1977)
- J.T. Schofield,J. R. Barnes, D. Crisp, R. M. Haberle, S. Larsen, J. A. Magalhaes, J. R. Murphy, A. Seiff, and G. Wilson, The Mars Pathfinder atmospheric structure investigation meteorology (ASI/MET) experiment, Science, 278(5344), 1752-1758 (1997) doi:10.1126/science.278.5344.1752
- A. Seiff, J.E. Tillman, J.R. Murphy, J.T. Schofield, D. Crisp, J.R. Barnes, C. LaBaw, C. Mahoney, J.D. Mihalov, G.R. Wilson, and R. Haberle, The atmosphere structure and meteorology instrument on the Mars Pathfinder lander, J. Geophys. Res., 103(E2), 4045-4056 (1997)
- Y.P. Shao, Physics and Modelling of Wind Erosion. 2 nd edn, (Heidelberg: Springer, 2008)
- Y. Shao, M. R. Raupach and P. A. Findlater, Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. 98, 12719-26 (1993)
- P. Sinclair, The lower structure of dust devils, J. Atmos. Sci., 30, 1599-1619 (1973)
- P.C. Sinclair, A Quantitative Analysis of the Dust Devil. Ph.D. Dissertation, University of Arizona (1966) pp.
- P.C. Sinclair, On the rotation of dust devils, Bull. Am. Meteorol. Soc., 46, 388-391 (1965)
- M. D. Smith, M.J. Wolff, M.T. Lemmon, N. Spanovich, D. Banfield, C.J. Budney, R.T. Clancy, A. Ghosh, G.A. Landis, P. Smith, B. Whitney, P.R. Christensen, S.W. Squyres, First atmospheric sciences results from the Mars Exploration Rovers mini-TES, Science, 306, 5702, 1750-1753, doi:10.1126/science.1104527 (2004).
- H. Smith, M.G. Tomasko, D. Britt, D.G. Crowe, R. Reid, H.U. Keller, N. Thomas, F. Gliem, P. Rueffer, R. Sullivan, R. Greeley, J.M. Knudsen, M.B. Madsen, H.P. Gunnlaugsson, S.F. Hviid, W. Goetz, L.A. Soderblom, L. Gaddis, and R. Kirk, The imager for Mars Pathfinder experiment, J. Geophys. Res., 102(E2), 4003-4025 (1997)
- P.H. Smith and M.T. Lemmon, 1999. Opacity of the Mars atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res., 104, 8975-8985 (1999).
- H. Smith, L.K. Tamppari, R.E. Arvidson, D. Bass, D. Blaney, W.V. Boynton, A.Carswell, D.C. Catling, B.C. Clark, T. Duck, E. DeJong, D. Fisher, W. Goetz, H.P.Gunnlaugsson, M.H. Hecht, V. Hipkin, J. Hoffman, S.F. Hviid, H.U. Keller, S.P.Kounaves, C.F. Lange, M.T. Lemmon, M.B. Madsen, M. Malin, W.J.Markiewicz, J. Marshall, C.P. McKay, M.T. Mellon, D.W. Ming, R.V. Morris, N. Renno, W.T. Pike, U. Staufer, C. Stoker, P. Taylor, J. Whiteway, A.P. Zent. Water at the Phoenix Landing Site. Science 325, 58-61 (2009).
- H. Smith, et al., Introduction to special section on the Phoenix Mission: Landing site characterization experiments, mission overviews, and expected science, J. Geophys. Res., 113(E3) (2008)
- J.T. Snow, and T. M. McClelland, Dust devils at White Sands Missile Range, New Mexico: 1. Temporal and spatial distributions, J. Geophys. Res., 95, 13,707-13,721 (1990)
- G.G. Sorrells, J.A. McDonald, Z.A. Der, and E. Herrin, E., Earth motion caused by local atmospheric pressure changes. Geophysics Journal 26, 83-98 (1971)
- G.G. Sorrells, A preliminary investigation into the relationship between long-period noise and local fluctuations in the atmospheric pressure field. Geophysics Journal 26, 71-82 (1971)
- K. Steakley, J. Murphy, A year of convective vortex activity at Gale Crater, Icarus, 278, 180-193 (2016)
- R. Sullivan, R. Greeley, M. Kraft, G. Wilson, M. Golombek, K. Herkenhoff, J. Murphy, P. Smith, Results of the Imager for Mars Pathfinder windsock experiment, J. Geophys. Res., 105(E10), 24547-24562 (2000) doi:10.1029/1999JE001234
- S.W. Squyres, S.W., R. E. Arvidson, J. F. Bell, III, J. Brückner, N. A. Cabrol, W. Calvin, M. H. Carr, P. R. Christensen, B. C. Clark, L. Crumpler, D. J. Des Marais, C. d'Uston, T. Economou, J. Farmer, W. Farrand, W. Folkner, M. Golombek, S. Gorevan, J. A. Grant, R. Greeley, J. Grotzinger, L. Haskin, K. E. Herkenhoff, S. Hviid, J. Johnson, G. Klingelhöfer, A. Knoll, G. Landis, M. Lemmon, R. Li, M. B. Madsen, M. C. Malin, S. M. McLennan, H. Y. McSween, D. W. Ming, J. Moersch, R. V. Morris, T. Parker, J. W. Rice, Jr., L. Richter, R. Rieder, M. Sims, M. Smith, P. Smith, L. A. Soderblom, R. Sullivan, H. Wänke, T. Wdowiak, M. Wolff, and A. Yen. The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science 305, 794-799 (2004).
- P.A. Taylor, D. C. Catling, M. Daly, C. S. Dickinson, H. P. Gunnlaugsson, A. M. Harri, and C. F. Lange Temperature, pressure, and wind instrumentation in the Phoenix meteorological package, J. Geophys. Res., 113, E00A10 (2008) doi:10.1029/2007JE003015
- Taylor, P. A., et al., On pressure measurement and seasonal pressure variations during the Phoenix mission, J. Geophys. Res., 115, E00E15 (2010) doi:10.1029/2009JE003422
- J.E. Tillman, N. C. Johnson, P. Guttorp, and D. B. Percival, The Martian annual atmospheric pressure cycle: Years without great dust storms, J. Geophys. Res., 98(E6), 10963-10971 (1993) doi:10.1029/93JE01084
- M.C. Towner, Characteristics of large martian dust devils using Mars Odyssey Thermal Emission Imaging System visual and infrared images, J. Geophys. Res., 114(E02010) (2008)
- D.M. Tratt, M.H. Hecht, D. Catling, E.C. Samulon, and P.H. Smith, In situ measurement of dust devil dynamics: Toward a strategy for Mars, J. Geophys. Res., 108(E11), 5116 (2004)
- D.T. Tyler, and J.R Barnes, Convergent crater circulations on Mars: Influence on the surface pressure cycle and the depth of the convective boundary layer, Geophs. Res. Lett., 42, 7343-7350 (2015)
- Tyler, D., Jr., and J. R. Barnes, Mesoscale modeling of the circulation in the Gale Crater region: An investigation into the complex forcing of convective boundary layer depths, Mars, 8, 58-77 (2013) doi:10.1555/mars.2013.0003
- A.Ullán, M.-P. Zorzano, J. Martín-Torres, P. Valentín-Serrano, H. Kahanpää, A.-M. Harri, J. Gómez-Elvira, and S. Navarro, Analysis of the wind pattern and pressure fluctuations during one and a half Martian years at Gale Crater, Icarus, Submitted (2016)
- J. Whiteway, M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, and C. Cook, Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08 (2008) doi:10.1029/2007JE003002
- N.R. Williams, Development of dust whirls and similar small-scale vortices, Bull. Am. Meteorol. Soc., 29, 106-117 (1948)
- J.P. Williams, Acoustic environment of the martian atmosphere, J. Geophys. Res., 106(E3), 5033-5041
- C.L. Wilson, A. Davis, D. Hutchins, and M. C. Towner, An ultrasonic anemometer for Mars, J. Acoust. Soc. Am., 123(5), 3401 (2008) doi:10.1121/1.2934100
- L. M. Zelenyi, O. I. Korablev, D. S. Rodionov, B. S. Novikov, K. I. Marchenkov, O. N. Andreev, E. V. Larionov, (2015), Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission. Solar System Research, 49(7), 509-517
- María-Paz Zorzano, F.J. Martín-Torres, H. Kahanpää, J. Moores, S. Navarro, A. Lepinette, E. Sebastian, and J. Gómez-Elvira, REMS team and the MSL Science team (2013), Radiation obscuration by dust devils at Gale as observed by the REMS UV Sensor, EGU General Assembly 2013, Geophysical Research Abstracts Vol. 15, EGU2013-11155, http://meetingorganizer.copernicus.org/EGU2013/EGU2013-11155.pdf (2013)