Academia.eduAcademia.edu

Outline

A New Kernel-Based Approach for NonlinearSystem Identification

2011, IEEE Transactions on Automatic Control

https://doi.org/10.1109/TAC.2011.2131830

Abstract

We present a novel nonparametric approach for identification of nonlinear systems. Exploiting the framework of Gaussian regression, the unknown nonlinear system is seen as a realization from a Gaussian random field. Its covariance encodes the idea of "fading" memory in the predictor and consists of a mixture of Gaussian kernels parametrized by few hyperparameters describing the interactions among past inputs and outputs. The kernel structure and the unknown hyperparameters are estimated maximizing their marginal likelihood so that the user is not required to define any part of the algorithmic architecture, e.g., the regressors and the model order. Once the kernel is estimated, the nonlinear model is obtained solving a Tikhonov-type variational problem. The Hilbert space the estimator belongs to is characterized. Benchmarks problems taken from the literature show the effectiveness of the new approach, also comparing its performance with a recently proposed algorithm based on direct weight optimization and with parametric approaches with model order estimated by AIC or BIC.

References (40)

  1. T. Söderström and P. Stoica, System Identification. Englewood Cliffs, NJ: Prentice-Hall, 1989.
  2. L. Ljung, System Identification, Theory for the User. Englewood Cliffs, NJ: Prentice Hall, 1997.
  3. H. Akaike, "A new look at the statistical model identification," IEEE Trans. Automat. Contr., vol. AC-19, pp. 716-723, 1974.
  4. G. Schwarz, "Estimating the dimension of a model," Ann. Statist., vol. 6, pp. 461-464, 1978.
  5. C. Hurvich and C. Tsai, "Regression and time series model selection in small samples," Biometrika, vol. 76, pp. 297-307, 1989.
  6. G. Pillonetto and G. De Nicolao, "A new kernel-based approach for linear system identification," Automatica, vol. 46, no. 1, pp. 81-93, 2010.
  7. G. Pillonetto, A. Chiuso, and G. De Nicolao, "Prediction error iden- tification of linear systems: A nonparametric Gaussian regression ap- proach," Automatica, vol. 47, no. 2, pp. 291-305, 2011.
  8. Sjoberg, Q. Zhang, L. Ljung, A. B. Delyon, P. Glo- rennec, H. Hjalmarsson, and A. Juditsky, "Nonlinear black-box mod- eling in system identification: A unified overview," Automatica, vol. 31, pp. 1691-1724, 1995.
  9. I. Lind and L. Ljung, "Regressor and structure selection in NARX models using a structured ANOVA approach," Automatica, vol. 44, pp. 383-395, 2008.
  10. I. Leontaritis and S. Billings, "Input-output parametric models for non- linear systems part II: Stochastic non-linear systems," Int. J. Contr., vol. 41, no. 2, pp. 329-344, 1985.
  11. T. Lin, B. Horne, P. Tino, and C. Giles, "Learning long-term dependen- cies in NARX recurrent neural networks," IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1329-1338, Nov. 1996.
  12. S. Shun-Feng and F. Yang, "On the dynamical modeling with neural fuzzy networks," IEEE Trans. Neural Netw., vol. 13, pp. 1548-1553, 2002.
  13. N. Draper and H. Smith, App. Regression Anal. New York: Wiley, 1981.
  14. R. Haber and H. Unbehauen, "Structure identification of nonlinear sys- tems-a survey," Automatica, vol. 26, pp. 651-677, 1990.
  15. S. Billings, A. Chen, and M. Korenberg, "Identification of MIMO non- linear systems using a forward-regression orthogonal algorithm," Int. J. Contr., vol. 49, pp. 2157-2189, 1989.
  16. W. Spinelli, L. Piroddi, and M. Lovera, "On the role of prefiltering in nonlinear system identification," IEEE Trans. Automat. Contr., vol. 50, pp. 1597-1602, 2005.
  17. J. Roll, A. Nazin, and L. Ljung, "Nonlinear system identification via direct weight optimization," Automatica, vol. 41, pp. 475-490, 2005.
  18. E. Bai and Y. Liu, "Recursive direct weight optimization in nonlinear system identification: A minimal probability approach," IEEE Trans. Automat. Contr., vol. 52, no. 7, pp. 1218-1231, 2007.
  19. C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. Cambridge, MA: The MIT Press, 2006.
  20. G. Pillonetto and B. Bell, "Bayes and empirical Bayes semi-blind de- convolution using eigenfunctions of a prior covariance," Automatica, vol. 43, no. 10, pp. 1698-1712, 2007.
  21. N. Aronszajn, "Theory of reproducing kernels," Trans. Amer. Math. Soc., vol. 68, pp. 337-404, 1950.
  22. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Berlin, Germany: Springer-Verlag, 2008.
  23. E. Hannan and M. Deistler, The Statistical Theory of Linear Systems. New York: Wiley, 1988.
  24. G. Wahba, Spline Models for Observational Data. Philadelphia, PA: SIAM, 1990.
  25. H. Minh, "Reproducing kernel Hilbert spaces in learning theory," Ph.D., Brown Univ., Providence, RI, 2006.
  26. S. Saitoh, Theory of Reproducing Kernels and its Applications. New York: Longman, 1988.
  27. E. Bai, R. Tempo, and Y. Liu, "Identification of IIR nonlinear systems without prior structural information," IEEE Trans. Automat. Contr., vol. 52, no. 3, pp. 442-453, Mar. 2007.
  28. D. MacKay, "Probable networks and plausible predictions-A review of practical Bayesian methods for supervised neural networks," Net- work: Computation in Neural Systems, vol. 6, pp. 469-505, 1995.
  29. W. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain Monte Carlo in Practice. London, U.K.: Chapman and Hall, 1996.
  30. I. Steinwart, D. Hush, and C. Scovel, "An explicit description of the re- producing Kernel Hilbert space of Gaussian RBF kernels," IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4635-4643, Oct. 2006.
  31. S. Smale and D. Zhou, "Learning theory estimates via integral oper- ators and their approximations," Constructive Approximation, vol. 26, pp. 153-172, 2007.
  32. L. Piroddi and W. Spinelli, "An identification algorithm for polynomial NARX models based on simulation error minimization," Int. J. Contr., vol. 76, pp. 1767-1781, 2003.
  33. A. Argyriou, C. A. Micchelli, and M. Pontil, "Learning convex com- binations of continuously parameterized basic kernels," in Proc. Conf. Learning Theory (COLT'05), 2005, pp. 338-352.
  34. C. A. Micchelli and M. Pontil, "Learning the kernel function via regu- larization," J. Machine Learning Res., vol. 6, pp. 1099-1125, 2005.
  35. F. Dinuzzo, Kernel Machines With Two Layers and Multiple Kernel Learning 2010 [Online]. Available: http://www-dimat.unipv.it/dinuzzo
  36. N. D. Bruijn, Asymptotic Methods in Analysis. Amsterdam, The Netherlands: North-Holland, 1961.
  37. B. Bell and G. Pillonetto, "Estimating parameters and stochastic func- tions of one variable using nonlinear measurements models," Inverse Problems, vol. 20, no. 3, pp. 627-646, 2004.
  38. B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, N.J.: Prentice-Hall, 1979.
  39. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. New York: Na- tional Bureau of Standards, 1964.
  40. Digital Library of Mathematical Function NIST [Online]. Available: http://dlmf.nist.gov/