On the harmonious chromatic number of graphs
2022
Abstract
The harmonious chromatic number of a graph G is the minimum number of colors that can be assigned to the vertices of G in a proper way such that any two distinct edges have different color pairs. This paper gives various results on harmonious chromatic numbers related to homomorphisms, the incidence graph of finite linear systems, and the known circulant graphs.
References (17)
- G. Araujo-Pardo, Gy. Kiss, C. Rubio-Montiel, and A. Vázquez-Ávila. On line colorings of finite projective spaces. Graphs Combin., 37(3):891-905, 2021.
- T. Beth, D. Jungnickel, and H. Lenz. Design theory. Vol. I, volume 69 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1999.
- G. Chartrand and P. Zhang. Chromatic graph theory. Discrete Mathematics and its Applications. CRC Press, 2009.
- M. Dębski, Z. Lonc, and P. Rzążewski. Achromatic and harmonious colorings of circulant graphs. J. Graph Theory, 87(1):18-34, 2018.
- K. Edwards. The harmonious chromatic number and the achromatic number. In Surveys in combina- torics, 1997 (London), volume 241 of London Math. Soc. Lecture Note Ser., pages 13-47. Cambridge Univ. Press, Cambridge, 1997.
- P. Erdős. Problems and results in graph theory and combinatorial analysis. In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), pages 169-192. Congressus Numerantium, No. XV, 1976.
- P. Erdős. On the combinatorial problems which I would most like to see solved. Combinatorica, 1(1):25- 42, 1981.
- O. Frank, F. Harary, and M. Plantholt. The line-distinguishing chromatic number of a graph. Ars Combin., 14:241-252, 1982.
- F. Harary, S. Hedetniemi, and G. Prins. An interpolation theorem for graphical homomorphisms. Portugal. Math., 26:453-462, 1967.
- J. W. P. Hirschfeld. Projective geometries over finite fields. The Clarendon Press Oxford University Press, New York, 1979. Oxford Mathematical Monographs.
- J. E. Hopcroft and M. S. Krishnamoorthy. On the harmonious coloring of graphs. SIAM J. Algebraic Discrete Methods, 4(3):306-311, 1983.
- D. Jungnickel, A. Pott, and K.W. Smith. Difference sets. In Handbook of Combinatorial Designs, pages 419-435. Chapman & Hall; CRC, 2007.
- A. Kundrík. The harmonious chromatic number of a graph. In Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity (Prachatice, 1990), volume 51 of Ann. Discrete Math., pages 167-170. North-Holland, Amsterdam, 1992.
- J. Mitchem. On the harmonious chromatic number of a graph. Discrete Math., 74(1-2):151-157, 1989.
- M. Olsen, C. Rubio-Montiel, and A. Silva-Ramírez. Zykov sums of digraphs with diachromatic number equal to its harmonious number. Submitted.
- C. Rubio-Montiel. The 4-girth-thickness of the complete multipartite graph. Electron. J. Graph Theory Appl. (EJGTA), 7(1):183-188, 2019.
- E.W. Weisstein. Generalized Quadrangle. From MathWorld -A Wolfram Web Resource. https://mathworld.wolfram.com/GeneralizedQuadrangle.html. Accessed: 2022-03-04.